Skip to content
2000
Volume 1, Issue 3
  • ISSN: 2210-2981
  • E-ISSN: 2210-2914

Abstract

Background: All-optical processing has a huge superiority in speed and efficiency than traditional optical-electrical-optical signal processing. Four-wave-mixing is an important nonlinear parametric process to achieve all-optical processing. Objective: We proposed the photonic crystal waveguide to enhance the conversion efficiency of four-wave-mixing significantly in practical application. Methods: We demonstrated a waveguide composed of silicon with mono-layer graphene-coated as core and Si-Ge distributed periodically on both sides as cladding. By the introduction of the slow light effect of Si-Ge photonic crystal and the localization effect of graphene, the conversion efficiency of four-wave-mixing had enhanced dramatically. Results: The conversion efficiency can be increased by 16dB compared with a silicon waveguide. The maximum efficiency as high as -9.1dB can be achieved in the Si-Ge-Graphene photonic crystal waveguide (SGG-PhCWG). The propagation loss can be decreased to 0.032dB/cm. Conclusion: Numerical results of the proposed SGG-PhCWG matched well with nonlinear coupled- mode theory. This configuration offered a new physical mechanism and solution for alloptical signal processing and high-efficiency nonlinear nanoscale devices.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/2210298101666210204162631
2021-03-01
2024-10-19
Loading full text...

Full text loading...

/content/journals/ccs/10.2174/2210298101666210204162631
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test