Skip to content
2000
image of Research Progress of Magnetic Nanomaterials and Magnetic Field based Chemiresistive Gas Sensors

Abstract

With the increasing demand for environmental protection and safety monitoring, the development of gas sensors with high sensitivity, fast response and selectivity is imperative. Magnetic field-assisted gas sensing is gradually becoming a research hotspot. This review aims to provide an overview of magnetic-related chemiresistive gas sensing from two segments, including magnetic sensing materials and magnetic field-assisted gas sensing. The type of sensors, the classification and parameters of magnetic materials, and the various materials employed in gas sensing are summarized. The review presents the currently commonly used methods for influencing magnetic structure and properties: chemical doping, defect engineering, and heterostructure construction ., as well as the application of applied magnetic field in gas sensing. This paper provides the first overview of chemiresistive gas sensors from a magnetic point of view, which is crucial for the development of magnetically correlated gas sensing technology and the subsequent study of the intrinsic mechanisms.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981359015241211065324
2024-12-23
2025-01-09
Loading full text...

Full text loading...

References

  1. Potyrailo R.A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 2016 116 19 11877 11923 10.1021/acs.chemrev.6b00187 27602947
    [Google Scholar]
  2. He S. Shi K. Liu C. Guo B. Chen J. Shi Z. Collaborative sensing in internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2022 24 3 1435 1474 10.1109/COMST.2022.3187138
    [Google Scholar]
  3. Li S. Zhang H. Zhu M. Kuang Z. Li X. Xu F. Miao S. Zhang Z. Lou X. Li H. Xia F. Electrochemical biosensors for whole blood analysis: Recent progress, challenges, and future perspectives. Chem. Rev. 2023 123 12 7953 8039 10.1021/acs.chemrev.1c00759 37262362
    [Google Scholar]
  4. Zhou X. Qi M. Li K. Xue Z. Wang T. Gas sensors based on nanoparticle-assembled interfaces and their application in breath detection of lung cancer. Cell Rep. Phys. Sci. 2023 4 11 101678 10.1016/j.xcrp.2023.101678
    [Google Scholar]
  5. Li D. Liang H. Zhang Y. MXene-based gas sensors: State of the art and prospects. Carbon 2024 226 119205 10.1016/j.carbon.2024.119205
    [Google Scholar]
  6. Devendiran S. Sastikumar D. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber. Opt. Laser Technol. 2017 89 186 191 10.1016/j.optlastec.2016.10.013
    [Google Scholar]
  7. Okazaki S. Nakagawa H. Asakura S. Shimizu H. Iwamoto I. A novel method of temperature compensation for a stable combustion-type gas sensor. Sens. Actuators B Chem. 2001 77 1-2 322 325 10.1016/S0925‑4005(01)00702‑X
    [Google Scholar]
  8. Jiang G. Goledzinowski M. Comeau F.J.E. Zarrin H. Lui G. Lenos J. Veileux A. Liu G. Zhang J. Hemmati S. Qiao J. Chen Z. Free‐standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 2016 26 11 1729 1736 10.1002/adfm.201504604
    [Google Scholar]
  9. Liu S. Sun H. Nagarajan R. Kumar J. Gu Z. Cho J. Kurup P. Dynamic chemical vapor sensing with nanofibrous film based surface acoustic wave sensors. Sens. Actuators A Phys. 2011 167 1 8 13 10.1016/j.sna.2011.02.007
    [Google Scholar]
  10. Sharma A. Eadi S.B. Noothalapati H. Otyepka M. Lee H.D. Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024 53 5 2530 2577 10.1039/D2CS00761D 38299314
    [Google Scholar]
  11. Yuan H. Aljneibi S.A.A.A. Yuan J. Wang Y. Liu H. Fang J. Tang C. Yan X. Cai H. Gu Y. Pennycook S.J. Tao J. Zhao D. ZnO nanosheets abundant in oxygen vacancies derived from metal‐organic frameworks for ppb‐level gas sensing. Adv. Mater. 2019 31 11 1807161 10.1002/adma.201807161 30637791
    [Google Scholar]
  12. Wang Y. Cui Y. Meng X. Zhang Z. Cao J. A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surf. Interfaces 2021 24 101110 10.1016/j.surfin.2021.101110
    [Google Scholar]
  13. Chang J. Horprathum M. Wang D. Meng G. Deng Z. Tong B. Kidkhunthod P. Dai T. Li M. Liu H. Tong W. Wang S. Fang X. Aliovalent Sc and Li co-doping boosts the performance of p-type NiO sensor. Sens. Actuators B Chem. 2021 326 128834 10.1016/j.snb.2020.128834
    [Google Scholar]
  14. Wang O. Kong J. Xue Z. An B. Xu J. Wang X. Tailoring the Ni–O microenvironment in amorphous-dominated highly active and stable Zn/NiO for hydrogen sulfide detection. ACS Sens. 2024 9 6 3233 3243 10.1021/acssensors.4c00589 38832488
    [Google Scholar]
  15. Umar A. Alshahrani A.A. Algarni H. Kumar R. CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B Chem. 2017 250 24 31 10.1016/j.snb.2017.04.062
    [Google Scholar]
  16. Peng F. Sun Y. Lu Y. Yu W. Ge M. Shi J. Cong R. Hao J. Dai N. Studies on sensing properties and mechanism of CuO nanoparticles to H2S Gas. Nanomaterials (Basel) 2020 10 4 774 10.3390/nano10040774 32316393
    [Google Scholar]
  17. Wang Z. Zhang Y. Liu S. Zhang T. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators B Chem. 2016 222 893 903 10.1016/j.snb.2015.09.027
    [Google Scholar]
  18. Zhu W. Xu T. Liu W. Wang W. Feng M. Cheng Y. Li Y. Tian Y. Li X. High-performance ethanol sensor based on In2O3 nanospheres grown on silicon nanoporous pillar array. Sens. Actuators B Chem. 2020 324 128734 10.1016/j.snb.2020.128734
    [Google Scholar]
  19. Ri J. Li X. Shao C. Liu Y. Han C. Li X. Liu Y. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sens. Actuators B Chem. 2020 317 128194 10.1016/j.snb.2020.128194
    [Google Scholar]
  20. Han C. Li X. Liu Y. Li X. Shao C. Ri J. Ma J. Liu Y. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. J. Hazard. Mater. 2021 403 124093 10.1016/j.jhazmat.2020.124093 33265068
    [Google Scholar]
  21. Hu H. Liang H. Fan J. Guo L. Li H. de Rooij N.F. Umar A. Algarni H. Wang Y. Zhou G. Assembling hollow cactus-like ZnO nanorods with dipole-modified graphene nanosheets for practical room-temperature formaldehyde sensing. ACS Appl. Mater. Interfaces 2022 14 11 13186 13195 10.1021/acsami.1c20680 35275633
    [Google Scholar]
  22. Xu Y. Xie J. Zhang Y. Tian F. Yang C. Zheng W. Liu X. Zhang J. Pinna N. Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 2021 411 125120 10.1016/j.jhazmat.2021.125120 33485227
    [Google Scholar]
  23. Qin Z. Song X. Wang J. Li X. Wu C. Wang X. Yin X. Zeng D. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl. Surf. Sci. 2022 573 151535 10.1016/j.apsusc.2021.151535
    [Google Scholar]
  24. Liu J. Hu Z. Zhang Y. Li H.Y. Gao N. Tian Z. Zhou L. Zhang B. Tang J. Zhang J. Yi F. Liu H. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 2020 12 1 59 10.1007/s40820‑020‑0394‑6 34138314
    [Google Scholar]
  25. Zhou Y. Gao C. Guo Y. UV assisted ultrasensitive trace NO 2 gas sensing based on few-layer MoS 2 nanosheet–ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 22 10286 10296 10.1039/C8TA02679C
    [Google Scholar]
  26. Chang J. Qin C. Guo W. Zhu L. Zhang Y. Wang Y. Cao J. Visible light enhanced NO2 sensing performance of Au nanoparticles modified SnS2 hierarchical structure at room temperature. Sens. Actuators B Chem. 2023 385 133633 10.1016/j.snb.2023.133633
    [Google Scholar]
  27. Yang H. Du Z. Yang Y. Li X. Wu Q. Tang J. Wang X. Zeng D. Ag intercalated SnS2 with S vacancy and expanded interlayer for enhancing NO2 sensing. Sens. Actuators B Chem. 2023 393 134140 10.1016/j.snb.2023.134140
    [Google Scholar]
  28. Gautam S.K. Panda S. Field effect characteristics and gas sensing properties of vertically grown PANI nanofibers. Org. Electron. 2023 123 106938 10.1016/j.orgel.2023.106938
    [Google Scholar]
  29. Lawaniya S.D. Kumar S. Yu Y. Awasthi K. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sens. Actuators B Chem. 2023 382 133566 10.1016/j.snb.2023.133566
    [Google Scholar]
  30. Kamble D.B. Sharma A.K. Yadav J.B. Patil V.B. Devan R.S. Jatratkar A.A. Yewale M.A. Ganbavle V.V. Pawar S.D. Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application. Sens. Actuators B Chem. 2017 244 522 530 10.1016/j.snb.2017.01.021
    [Google Scholar]
  31. Han X. Li C. Guo M. Zhao X. Wang Z. Qi H. Chen K. Fiber-optic trace gas sensing based on graphite excited photoacoustic wave. Sens. Actuators B Chem. 2024 408 135546 10.1016/j.snb.2024.135546
    [Google Scholar]
  32. Yan Y. Yang G. Xu J.L. Zhang M. Kuo C.C. Wang S.D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Sci. Technol. Adv. Mater. 2020 21 1 768 786 10.1080/14686996.2020.1820845 33488297
    [Google Scholar]
  33. Verma A. Gupta R. Verma A.S. Kumar T. A review of composite conducting polymer-based sensors for detection of industrial waste gases. Sens. Actuators Rep. 2023 5 100143 10.1016/j.snr.2023.100143
    [Google Scholar]
  34. Reddy P C H. Patil S.S. Chandrasekaran S. Synthesis of novel conducting triblock copolymer poly(thiophene-co-pyrrole-co-aniline) by chemical oxidative polymerization method for gas sensor application. Synth. Met. 2024 306 117626 10.1016/j.synthmet.2024.117626
    [Google Scholar]
  35. Gangu K.K. Maddila S. Jonnalagadda S.B. A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Sci. Total Environ. 2019 646 1398 1412 10.1016/j.scitotenv.2018.07.375 30235625
    [Google Scholar]
  36. Pi Y. Jin S. Li X. Tu S. Li Z. Xiao J. Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline. Appl. Catal. B 2019 256 117882 10.1016/j.apcatb.2019.117882
    [Google Scholar]
  37. Wang X. Zhang Y. Chen H. Sun G. Wang Z. Hou H. Hu Z. Gao Q. Zhang Q. High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS2/MWCNTs nanocomposites. J. Alloys Compd. 2022 897 163029 10.1016/j.jallcom.2021.163029
    [Google Scholar]
  38. Shooshtari M. Salehi A. Vollebregt S. Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature. IEEE Sens. J. 2021 21 5 5763 5770 10.1109/JSEN.2020.3038647
    [Google Scholar]
  39. Young S.J. Liu Y.H. Lin Z.D. Ahmed K. Shiblee M.D.N.I. Romanuik S. Sekhar P.K. Thundat T. Nagahara L. Arya S. Ahmed R. Furukawa H. Khosla A. Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature. J. Electrochem. Soc. 2020 167 16 167519 10.1149/1945‑7111/abd1be
    [Google Scholar]
  40. Wang J. Gao Y. Chen F. Zhang L. Li H. de Rooij N.F. Umar A. Lee Y.K. French P.J. Yang B. Wang Y. Zhou G. Assembly of core/shell nanospheres of amorphous hemin/acetone-derived carbonized polymer with graphene nanosheets for room-temperature NO sensing. ACS Appl. Mater. Interfaces 2022 14 47 53193 53201 10.1021/acsami.2c16769 36395355
    [Google Scholar]
  41. Li Z. Yang F. Yin Y. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater. 2020 30 2 1903467 10.1002/adfm.201903467
    [Google Scholar]
  42. Chang J. Qin C. Zhang Y. Zhu L. Zhang Y. Wang Y. Cao J. Abundant active sites triggered by Co-doped SnS2 for ppb-level NO2 detection. Sens. Actuators B Chem. 2023 395 134511 10.1016/j.snb.2023.134511
    [Google Scholar]
  43. Zhou F. Mu Z. Yuan Z. Zhu H. Yan X. Gao H. Meng F. ppb-Level detection of isopropanol based on porous ZnSnO 3 /Ag through the synergistic effects of Ag and amorphous nanocube structures. J. Mater. Chem. A Mater. Energy Sustain. 2023 11 41 22503 22511 10.1039/D3TA04933G
    [Google Scholar]
  44. Wang X. Zhang W. Wang X. Li X. Sui X. Jiang H. Liu G. Li B. Sheng Y. Zhou J. Xie E. Zhang Z. Heterostructure engineering of NiO foam /In2S3 film for high-performance ethylene glycol gas sensors. Sens. Actuators B Chem. 2023 392 134110 10.1016/j.snb.2023.134110
    [Google Scholar]
  45. Han S. Li L. Ji C. Liu X. Wang G.E. Xu G. Sun Z. Luo J. Visible-photoactive perovskite ferroelectric-driven self-powered gas detection. J. Am. Chem. Soc. 2023 145 23 12853 12860 10.1021/jacs.3c03719 37263965
    [Google Scholar]
  46. Sun H. Cao M. Zhang P. Tian X. Lu M. Du L. Xue K. Cui G. Magnetic-field-enhanced H 2 S sensitivity of Cu 2 O/NiO heterostructure ordered nanoarrays. ACS Sens. 2022 7 7 1903 1911 10.1021/acssensors.2c00495 35729782
    [Google Scholar]
  47. Ali A. Zafar H. Zia M. ul Haq I. Phull A.R. Ali J.S. Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016 9 49 67 10.2147/NSA.S99986 27578966
    [Google Scholar]
  48. Yang S.H. Son H.Y. Park M. Rho H.W. Lee H. Huh Y.M. Inhibition of PD-L1 and tumor growth in triple-negative breast cancer using a magnetic nanovector with microRNA34a. Cancer Nanotechnol. 2023 14 1 21 10.1186/s12645‑023‑00171‑0
    [Google Scholar]
  49. Nithya R. Thirunavukkarasu A. Sathya A.B. Sivashankar R. Magnetic materials and magnetic separation of dyes from aqueous solutions: A review. Environ. Chem. Lett. 2021 19 2 1275 1294 10.1007/s10311‑020‑01149‑9
    [Google Scholar]
  50. Jeong U. Teng X. Wang Y. Yang H. Xia Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 2007 19 1 33 60 10.1002/adma.200600674
    [Google Scholar]
  51. Zhang T. Luo H. Zeng H. Zhang R. Shen Y. Synthesis and gas-sensing characteristics of high thermostability γ-Fe2O3 power. Sens. Actuators B Chem. 2023 32 181 184
    [Google Scholar]
  52. Tao S. Liu X. Chu X. Shen Y. Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sens. Actuators B Chem. 1999 61 1-3 33 38 10.1016/S0925‑4005(99)00276‑2
    [Google Scholar]
  53. Tang Y. Li Z. Zu X. Ma J. Wang L. Yang J. Du B. Yu Q. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability. J. Hazard. Mater. 2015 298 154 161 10.1016/j.jhazmat.2015.04.044 26057440
    [Google Scholar]
  54. Qu F. Liu J. Wang Y. Wen S. Chen Y. Li X. Ruan S. Hierarchical Fe3O4@Co3O4 core–shell microspheres: Preparation and acetone sensing properties. Sens. Actuators B Chem. 2014 199 346 353 10.1016/j.snb.2014.04.003
    [Google Scholar]
  55. Kim D. Hong J. Park Y.R. Kim K.J. The origin of oxygen vacancy induced ferromagnetism in undoped TiO 2. J. Phys. Condens. Matter 2009 21 19 195405 10.1088/0953‑8984/21/19/195405 21825483
    [Google Scholar]
  56. Gao D. Zhang J. Yang G. Qi J. Si M. Xue D. Ferromagnetism induced by oxygen vacancies in zinc peroxide nanoparticles. J. Phys. Chem. C 2011 115 33 16405 16410 10.1021/jp201741m
    [Google Scholar]
  57. Singh R. Unexpected magnetism in nanomaterials. J. Magn. Magn. Mater. 2013 346 58 73 10.1016/j.jmmm.2013.07.005
    [Google Scholar]
  58. Jiang F.X. Chen D. Zhou G.W. Wang Y.N. Xu X.H. The dramatic enhancement of ferromagnetism and band gap in Fe-doped In2O3 nanodot arrays. Sci. Rep. 2018 8 1 2417 10.1038/s41598‑018‑20751‑0 29403016
    [Google Scholar]
  59. Krishna N.S. Kaleemulla S. Amarendra G. Rao N.M. Krishnamoorthi C. Kuppan M. Begam M.R. Reddy D.S. Omkaram I. Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull. 2015 61 486 491 10.1016/j.materresbull.2014.10.065
    [Google Scholar]
  60. Rudra P. Dambhare N.V. Srihari V. Das S. Rath A.K. Saha D. Mondal S. Magnetic chemiresistive Fe-doped In 2 O 3 nanocubes to tunably detect NO 2 at ppm to ppb Concentrations. ACS Appl. Nano Mater. 2024 7 12 14331 14343 10.1021/acsanm.4c01795
    [Google Scholar]
  61. Feng C. Kou X. Chen B. Qian G. Sun Y. Lu G. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B Chem. 2017 253 584 591 10.1016/j.snb.2017.06.115
    [Google Scholar]
  62. Shang W. Wang D. Zhang B. Jiang C. Qu F. Yang M. Aliovalent Fe( iii )-doped NiO microspheres for enhanced butanol gas sensing properties. Dalton Trans. 2018 47 42 15181 15188 10.1039/C8DT03242D 30321249
    [Google Scholar]
  63. Tung T.T. Chien N.V. Van Duy N. Van Hieu N. Nine M.J. Coghlan C.J. Tran D.N.H. Losic D. Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects. J. Colloid Interface Sci. 2019 539 315 325 10.1016/j.jcis.2018.12.077 30594006
    [Google Scholar]
  64. Sankar Ganesh R. Patil V.L. Durgadevi E. Navaneethan M. Ponnusamy S. Muthamizhchelvan C. Kawasaki S. Patil P.S. Hayakawa Y. Growth of Fe doped ZnO nanoellipsoids for selective NO2 gas sensing application. Chem. Phys. Lett. 2019 734 136725 10.1016/j.cplett.2019.136725
    [Google Scholar]
  65. Zhao S. Shen Y. Xia Y. Pan A. Li Z. Carraro C. Maboudian R. Synthesis and gas sensing properties of NiO/ZnO heterostructured nanowires. J. Alloys Compd. 2021 877 160189 10.1016/j.jallcom.2021.160189
    [Google Scholar]
  66. Sun B. Lv H. Liu Z. Wang J. Bai X. Zhang Y. Chen J. Kan K. Shi K. Co 3 O 4 @PEI/Ti 3 C 2 T x MXene nanocomposites for a highly sensitive NO x gas sensor with a low detection limit. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 10 6335 6344 10.1039/D0TA11392A
    [Google Scholar]
  67. Jia X. Yu S. Cheng C. Yang J. Li Y. Wang S. Song H. Ag nanoparticles modified Fe3O4/reduced graphene oxide and their acetone sensing properties. Mater. Chem. Phys. 2022 276 125378 10.1016/j.matchemphys.2021.125378
    [Google Scholar]
  68. Sun L. Sun J. Zhang K. Sun X. Bai S. Zhao Y. Luo R. Li D. Chen A. rGO functionalized α-Fe2O3/Co3O4 heterojunction for NO2 detection. Sens. Actuators B Chem. 2022 354 131194 10.1016/j.snb.2021.131194
    [Google Scholar]
  69. Hu J. Guan W. Xiong X. Chen Y. Long H. Modulation of rGO-Co3O4 heterojunction with multi-walled carbon nanotubes for efficient ethanol detection. Sens. Actuators B Chem. 2022 368 132202 10.1016/j.snb.2022.132202
    [Google Scholar]
  70. Chen B. Li P. Sun L. Wang Y. Wang B. Co 3 O 4 Nanosheets decorated with in 2 O 3 nanocubes with exposed 001 facets for ppb-level CO sensing. ACS Appl. Nano Mater. 2022 5 8 11011 11019 10.1021/acsanm.2c02235
    [Google Scholar]
  71. Dong Y. Ying Z. Zhang T. Zheng X. Sheng W. Zheng P. Enhanced NO2 sensing performance based on Au nanocluster functionalized Co3O4 nanospheres. J. Mater. Sci. Mater. Electron. 2023 34 30 2022 10.1007/s10854‑023‑11392‑9
    [Google Scholar]
  72. Jiang Q. Guo X. Wang C. Jia L. Zhao Z. Yang R. Zhang Y. Deng Q. Ultra-responsive and selective ethanol and acetone sensor based on Ce-doped Co3O4 microspheres assembled by submicron spheres with multilayer core-shell structure. Colloids Surf. A Physicochem. Eng. Asp. 2023 666 131301 10.1016/j.colsurfa.2023.131301
    [Google Scholar]
  73. Begi A.N. Hussain S. Liaqat M.J. Alsaiari N.S. Ouladsmane M. Qiao G. Liu G. Unlocking low-concentration NH3 gas sensing: An innovative MOF-derived In2O3/Co3O4 nanocomposite approach. Mater. Sci. Semicond. Process. 2024 181 108641 10.1016/j.mssp.2024.108641
    [Google Scholar]
  74. Pughe C. Mustonen O.H.J. Gibbs A.S. Etter M. Liu C. Dutton S.E. Friskney A. Hyatt N.C. Stenning G.B.G. Mutch H.M. Coomer F.C. Cussen E.J. Site-Selective d 10 /d 0 Substitution in an S = 1 / 2 Spin Ladder Ba 2 CuTe 1– x Wx O 6 (0 ≤ x ≤ 0.3). Inorg. Chem. 2022 61 9 4033 4045 10.1021/acs.inorgchem.1c03655 35187928
    [Google Scholar]
  75. Wang L. Li J. Wang Y. Zhao L. Jiang Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 2012 181-182 72 79 10.1016/j.cej.2011.10.088
    [Google Scholar]
  76. Wang W. Gumfekar S.P. Jiao Q. Zhao B. Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials. J. Mater. Chem. C Mater. Opt. Electron. Devices 2013 1 16 2851 10.1039/c3tc00757j
    [Google Scholar]
  77. Zhang R. Qin C. Bala H. Wang Y. Cao J. Recent progress in spinel ferrite (MFe2O4) chemiresistive based gas sensors. Nanomaterials (Basel) 2023 13 15 2188 10.3390/nano13152188 37570506
    [Google Scholar]
  78. Šutka A. Gross K.A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 2016 222 95 105 10.1016/j.snb.2015.08.027
    [Google Scholar]
  79. Li L. Tan J. Dun M. Huang X. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B Chem. 2017 248 85 91 10.1016/j.snb.2017.03.119
    [Google Scholar]
  80. Gao X. Wang J. Zhang D. Nie K. Ma Y. Zhong J. Sun X. Hollow NiFe 2 O 4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 10 5007 5012 10.1039/C6TA11058D
    [Google Scholar]
  81. Zhou T. Zhang T. Zeng Y. Zhang R. Lou Z. Deng J. Wang L. Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sens. Actuators B Chem. 2018 255 1436 1444 10.1016/j.snb.2017.08.139
    [Google Scholar]
  82. Gao X. Sun Y. Zhu C. Li C. Ouyang Q. Chen Y. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets. Sens. Actuators B Chem. 2017 246 662 672 10.1016/j.snb.2017.02.100
    [Google Scholar]
  83. Lin G. Wang H. Li X. Lai X. Zou Y. Zhou X. Liu D. Wan J. Xin H. Chestnut-like CoFe2O4@SiO2@In2O3 nanocomposite microspheres with enhanced acetone sensing property. Sens. Actuators B Chem. 2018 255 3364 3373 10.1016/j.snb.2017.09.163
    [Google Scholar]
  84. Li X. Lu D. Shao C. Lu G. Li X. Liu Y. Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B Chem. 2018 258 436 446 10.1016/j.snb.2017.11.131
    [Google Scholar]
  85. Ma Y. Lu Y. Gou H. Zhang W. Yan S. Xu X. Octahedral NiFe2O4 for high-performance gas sensor with low working temperature. Ceram. Int. 2018 44 2 2620 2625 10.1016/j.ceramint.2017.11.008
    [Google Scholar]
  86. Zhang H.J. Liu L.Z. Zhang X.R. Zhang S. Meng F.N. Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor. J. Alloys Compd. 2019 788 1103 1112 10.1016/j.jallcom.2019.03.009
    [Google Scholar]
  87. Zhang W. Shen Y. Zhang J. Bi H. Zhao S. Zhou P. Han C. Wei D. Cheng N. Low-temperature H. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure. Appl. Surf. Sci. 2019 470 581 590 10.1016/j.apsusc.2018.11.164
    [Google Scholar]
  88. Zheng C. Zhang C. He L. Zhang K. Zhang J. Jin L. Asiri A.M. Alamry K.A. Chu X. ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing. J. Alloys Compd. 2020 849 156461 10.1016/j.jallcom.2020.156461
    [Google Scholar]
  89. Zheng C. Zhang C. Zhang K. Zhang J. Jin L. Asiri A.M. Alamry K.A. He L. Chu X. Growth of ZnFe2O4 nanosheets on reduced graphene oxide with enhanced ethanol sensing properties. Sens. Actuators B Chem. 2021 330 129280 10.1016/j.snb.2020.129280
    [Google Scholar]
  90. Zhang H. Gao S. Feng Z. Sun Z. Yan X. Li Z. Yang X. Pan G. Yuan Y. Guo L. Room temperature detection of low-concentration H2S based on CuO functionalized ZnFe2O4 porous spheres. Sens. Actuators B Chem. 2022 368 132100 10.1016/j.snb.2022.132100
    [Google Scholar]
  91. Gómez Méndez E. Posada C.M. Jaramillo Ocampo J.M. Statistical analysis of Sr substituted NiFe2O4 thin films for liquefied petroleum gas sensor applications. Mater. Sci. Eng. B 2022 278 115614 10.1016/j.mseb.2022.115614
    [Google Scholar]
  92. He L. Hu J. Yuan Q. Xia Z. Jin L. Gao H. Fan L. Chu X. Meng F. Synthesis of porous ZnFe2O4/SnO2 core-shell spheres for high-performance acetone gas sensing. Sens. Actuators B Chem. 2023 378 133123 10.1016/j.snb.2022.133123
    [Google Scholar]
  93. Hu J. Xiong X. Guan W. Chen Y. Long H. Design and construction of core-shelled Co3O4-CoFe2O4 heterojunction for highly sensitive and selective detection of ammonia. Chem. Eng. J. 2023 452 139346 10.1016/j.cej.2022.139346
    [Google Scholar]
  94. Shidpour R. Manteghian M. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2010 2 8 1429 1435 10.1039/b9nr00368a 20820730
    [Google Scholar]
  95. Son Y.W. Cohen M.L. Louie S.G. Half-metallic graphene nanoribbons. Nature 2006 444 7117 347 349 10.1038/nature05180 17108960
    [Google Scholar]
  96. Kan E. Li Z. Yang J. Hou J.G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008 130 13 4224 4225 10.1021/ja710407t 18331034
    [Google Scholar]
  97. Xu R. Liu B. Zou X. Cheng H.M. Half-metallicity in Co-doped WSe 2 nanoribbons. ACS Appl. Mater. Interfaces 2017 9 44 38796 38801 10.1021/acsami.7b12196 29035024
    [Google Scholar]
  98. Zhang X. Xi B. Liu Y. Yao X. Wu X. Antiferromagnetic semimetal in Ti-intercalated borophene heterobilayer. J. Phys. Chem. C 2020 124 8 4709 4716 10.1021/acs.jpcc.9b10677
    [Google Scholar]
  99. Huang B. Clark G. Navarro-Moratalla E. Klein D.R. Cheng R. Seyler K.L. Zhong D. Schmidgall E. McGuire M.A. Cobden D.H. Yao W. Xiao D. Jarillo-Herrero P. Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017 546 7657 270 273 10.1038/nature22391 28593970
    [Google Scholar]
  100. Gong C. Li L. Li Z. Ji H. Stern A. Xia Y. Cao T. Bao W. Wang C. Wang Y. Qiu Z.Q. Cava R.J. Louie S.G. Xia J. Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017 546 7657 265 269 10.1038/nature22060 28445468
    [Google Scholar]
  101. Zakharchenko A. Guz N. Laradji A.M. Katz E. Minko S. Magnetic field remotely controlled selective biocatalysis. Nat. Catal. 2017 1 1 73 81 10.1038/s41929‑017‑0003‑3
    [Google Scholar]
  102. Zhang K. Ding C. She Y. Wu Z. Zhao C. Pan B. Zhang L. Zhou W. Fan Q. CuFe2O4/MoS2 mixed-dimensional heterostructures with improved gas sensing response. Nanoscale Res. Lett. 2020 15 1 32 10.1186/s11671‑020‑3268‑4 32016642
    [Google Scholar]
  103. Pramanik M. Jana B. Ghatak A. Das K. Improvement in efficiency of MoS2 nanoflower based ethylene gas sensor on transition metal doping: An experimental and theoretical investigation. Mater. Chem. Phys. 2024 314 128892 10.1016/j.matchemphys.2024.128892
    [Google Scholar]
  104. Kim Y. Kwon K.C. Kang S. Kim C. Kim T.H. Hong S.P. Park S.Y. Suh J.M. Choi M.J. Han S. Jang H.W. Two-dimensional NbS 2 gas sensors for selective and reversible NO 2 detection at room temperature. ACS Sens. 2019 4 9 2395 2402 10.1021/acssensors.9b00992 31339038
    [Google Scholar]
  105. Wang H. Cui Z. Xiong R. Wang X. Song W. Guo X. Wu X. Sa B. Zeng D. Synergism of edge effect and interlayer engineering of VS 2 on CNFs for rapid and precise NO 2 Detection. ACS Sens. 2023 8 10 3923 3932 10.1021/acssensors.3c01526 37823841
    [Google Scholar]
  106. Fei Z. Huang B. Malinowski P. Wang W. Song T. Sanchez J. Yao W. Xiao D. Zhu X. May A.F. Wu W. Cobden D.H. Chu J.H. Xu X. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018 17 9 778 782 10.1038/s41563‑018‑0149‑7 30104669
    [Google Scholar]
  107. Chen Z. Yang Y. Ying T. Guo J. High- Tc Ferromagnetic semiconductor in thinned 3d ising ferromagnetic metal Fe 3 GaTe 2. Nano Lett. 2024 24 3 993 1000 10.1021/acs.nanolett.3c04462 38190333
    [Google Scholar]
  108. Naguib M. Mashtalir O. Carle J. Presser V. Lu J. Hultman L. Gogotsi Y. Barsoum M.W. Two-dimensional transition metal carbides. ACS Nano 2012 6 2 1322 1331 10.1021/nn204153h 22279971
    [Google Scholar]
  109. Li X. Xu J. Jiang Y. He Z. Liu B. Xie H. Li H. Li Z. Wang Y. Tai H. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor. Sens. Actuators B Chem. 2020 316 128144 10.1016/j.snb.2020.128144
    [Google Scholar]
  110. Xiong Z. Yang J. Gao Z. Yang Q. Shi D. Orthorhombic Mo3N2 nanobelts with improved electrochemical properties as electrode material for supercapacitors. Results Phys. 2020 16 102941 10.1016/j.rinp.2020.102941
    [Google Scholar]
  111. Xiao X. Urbankowski P. Hantanasirisakul K. Yang Y. Sasaki S. Yang L. Chen C. Wang H. Miao L. Tolbert S.H. Billinge S.J.L. Abruña H.D. May S.J. Gogotsi Y. Scalable synthesis of ultrathin Mn 3 N 2 exhibiting room‐temperature antiferromagnetism. Adv. Funct. Mater. 2019 29 17 1809001 10.1002/adfm.201809001
    [Google Scholar]
  112. Zhang Z. Cao J. Wang S. Sun Z. Li J. Enhanced sensitivity of ZnFe 2 O 4 based on ordered magnetic moment induced by magnetic field: A new insight into mechanism. Adv. Funct. Mater. 2023 33 48 2305253 10.1002/adfm.202305253
    [Google Scholar]
  113. Cao J. Zhang Z. Wang S. Sun Z. Li J. Wang Y. Xu X. Ye Z. Zhang H. Magnetic field assisted enhanced sensitivity of nonferromagnetic materials boosting the carrier transfer: Mechanistic studies. ACS Sens. 2024 9 9 4777 4787 10.1021/acssensors.4c01170 39254107
    [Google Scholar]
  114. Chakraborty N. Panda S.N. Mishra A.K. Barman A. Mondal S. Ferromagnetic Ni 1– x Vx O 1– y nano-clusters for NO detection at room temperature: A case of magnetic field-induced chemiresistive sensing. ACS Appl. Mater. Interfaces 2022 14 46 52301 52315 10.1021/acsami.2c15766 36375038
    [Google Scholar]
  115. Kim H.J. Lee J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014 192 607 627 10.1016/j.snb.2013.11.005
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981359015241211065324
Loading
/content/journals/ccs/10.2174/0122102981359015241211065324
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gas sensing ; Magnetic material ; chemiresistive ; magnetic field
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test