Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background: The lack of anti-COVID-19 treatment to date warrants urgent research into potential therapeutic targets. Virtual drug screening techniques enable the identification of novel compounds that target the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Main Protease (Mpro). Objective: The binding of the halogenated compounds to Mpro may inhibit the replication and transcription of SARS-CoV-2 and, ultimately, stop the viral life cycle. In times of dire need for anti- COVID-19 treatment, this study lays the groundwork for further experimental research to investigate these compounds' efficacy and potential medical uses to treat COVID-19. Methods: New heterocyclic compounds were synthesized through the first reaction of cyclohexane- 1, 3-dione (1a) or dimedone (1b) with trichloroacetonitrile (2) to give the 2,2,2-trichloroethylidene) cyclohexane-1,3-dione derivatives 3a and 3b, respectively. The latter compounds underwent a series of heterocyclization reactions to produce biologically active compounds. Results: Novel compounds, including fused thiophene, pyrimidine and pyran derivatives, were synthesized and tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as SARS-CoV nsp14 and Vaccinia D1-D12 complex to evaluate their specificity and their molecular modeling was also studied in the aim of producing anti-COVID-19 target molecules. Conclusion: The results showed that compounds 10a, 10b, 10c, 10e, 10f, 10g and 10h showed high % inhibitions against SARs-Covnsp 14. Whereas compounds 5a, 7a, 8b, 10a, 10b, 10c and 10i showed high inhibitions against hRNMT. This study explored the binding affinity of twenty-two halogenated compounds to the SARS-CoV-2 MPro and discovered fifteen compounds with higher binding affinity than Nelfinavir, of which three showed remarkable results. c-Met kinase inhibitions of 10a, 10f, 10g and 10h showed that all compounds exhibited higher inhibitions than the reference Foretinib.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207325666220829111236
2023-06-01
2025-04-11
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207325666220829111236
Loading

  • Article Type:
    Research Article
Keyword(s): coronavirus; main protease; molecular docking; MPro; SARS-CoV-2; Trichloroethylidene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test