Skip to content
2000
Volume 28, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Increasing research has proved that microglial activation, polarization, and inflammatory response in the brain affect the pathology of Alzheimer's disease. Hence, employing reagents targeted to microglial functions to optimize the brain microenvironment may become a promising therapeutic method for Alzheimer's disease.

Methods

The phagocytosis and clearance of Aβ1-42 were detected using western blot and immunofluorescence assay. The cell viability was determined 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) or cell counting kit-8 (CCK-8) assay. The load of pro-inflammation, in addition to anti-inflammation factors, was measured through an enzyme-linked immunosorbent (ELISA) assay. Flow cytometry was employed to estimate the apoptotic cells. The protein level related to microglial polarization and neuronal injury was detected western blot. The length of the neuronal synapse was investigated using an immunofluorescence assay.

Results

Dulaglutide significantly promoted microglia to phagocytose and removed the Aβ plague. Additionally, dulaglutide treatment inhibited the production of pro-inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin -1β, and IL-6, whereas it increased the load of anti-inflammatory molecules, such as IL-10 affected by Aβ1-42 exposure. Further investigation verified that Aβ1-42 down-regulated YM1/2 positive M2 microglial polarization phenotype but up-regulated cyclooxygenase-2 (Cox2) positive M1 microglia. However, treating with dulaglutide effectively counteracted these effects. Moreover, dulaglutide dramatically recovered primary cortical neuron cell viability and inhibited cell apoptosis influenced by Aβ1-42. Furthermore, the dulaglutide also reversed neuronal synapse injury after exposure to Aβ1-42.

Conclusion

Altogether, this investigation verified that dulaglutide improved Aβ-induced inflammation and neuronal injury by mediating the activation and polarization of microglia, thereby alleviating Alzheimer's disease efficiently.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207325666220726163514
2024-11-27
2026-02-11
Loading full text...

Full text loading...

References

  1. ShawA.R. Perales-PuchaltJ. BrightB. MooreT. RobinsonM. HillC.V. VidoniE.J. Recruitment of older African Americans in Alzheimers disease clinical trials using a community based research approach.medRxiv2020Available from: medrxiv.org/content/10.1101/2020.07.16.20155556v2.article-info
    [Google Scholar]
  2. BorsonS. FrankL. BayleyP.J. BoustaniM. DeanM. LinP-J. McCartenJ.R. MorrisJ.C. SalmonD.P. SchmittF.A.J.A. Dementia, improving dementia care: The role of screening and detection of cognitive impairment.Alzheimers Dementia201392151159
    [Google Scholar]
  3. KrsteskaR.J.M. The affective disturbance in people with Alzheimer’ and vascular dementia.Inter. Res. J.20198-1867274
    [Google Scholar]
  4. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  5. SarlusH. HenekaM.T. Microglia in Alzheimer’s disease.J. Clin. Invest.201712793240324910.1172/JCI90606 28862638
    [Google Scholar]
  6. MirR.H. SawhneyG. PottooF.H. Mohi-Ud-DinR. MadishettiS. JachakS.M. AhmedZ. MasoodiM.H.J.E.S. Role of environmental pollutants in Alzheimer’s disease: A review.Environ. Sci. Pollut. Res. Int.202027364472410.1007/s11356‑020‑09964‑x
    [Google Scholar]
  7. MirR.H. ShahA.J. Mohi-Ud-DinR. PotooF.H. DarM. JachakS.M. MasoodiM.H.J.C.m.c. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease.Curr. Med. Chem.202128234799482510.2174/0929867327666200730213215
    [Google Scholar]
  8. HardyJ. The amyloid hypothesis for Alzheimer’s disease: A critical reappraisal.J. Neurochem.200911041129113410.1111/j.1471‑4159.2009.06181.x 19457065
    [Google Scholar]
  9. Mohi-Ud-DinR. MirR.H. WaniT.U. ShahA.J. BandayN. PottooF.H.J.C.C. ScreeningH.T. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery.Comb. Chem. High Throughput Screen.2022254616633
    [Google Scholar]
  10. Mohi-Ud-DinR. MirR.H. WaniT.U. ShahA.J. Mohi-Ud-DinI. DarM.A. PottooF.H.J.C. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders.Comb. Chem. High Throughput Screen.2021254607615
    [Google Scholar]
  11. SuY. ChangP.T. Acidic pH promotes the formation of toxic fibrils from beta-amyloid peptide.Brain Res.20018931-228729110.1016/S0006‑8993(00)03322‑9 11223020
    [Google Scholar]
  12. HuX. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide.Proc. Natl. Acad. Sci. USA200910620324-20329
    [Google Scholar]
  13. MosserC.A. BaptistaS. ArnouxI. AudinatE. Microglia in CNS development: Shaping the brain for the future.Prog. Neurobiol.2017149-15012010.1016/j.pneurobio.2017.01.002 28143732
    [Google Scholar]
  14. OrihuelaR. McPhersonC.A. HarryG.J. Microglial M1/M2 polarization and metabolic states.Br. J. Pharmacol.2016173464966510.1111/bph.13139 25800044
    [Google Scholar]
  15. HickmanS.E. AllisonE.K. El KhouryJ. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice.J. Neurosci.200828338354836010.1523/JNEUROSCI.0616‑08.2008 18701698
    [Google Scholar]
  16. DariaA. ColomboA. LloveraG. HampelH. WillemM. LieszA. HaassC. TahirovicS. Young microglia restore amyloid plaque clearance of aged microglia.EMBO J.201736558360310.15252/embj.201694591 28007893
    [Google Scholar]
  17. HellwigS. MasuchA. NestelS. KatzmarskiN. Meyer-LuehmannM. BiberK. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures.Sci. Rep.2015511462410.1038/srep14624 26416689
    [Google Scholar]
  18. SpangenbergE.E. LeeR.J. NajafiA.R. RiceR.A. ElmoreM.R. Blurton-JonesM. WestB.L. GreenK.N. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology.Brain2016139Pt 41265128110.1093/brain/aww016 26921617
    [Google Scholar]
  19. SaijoK. GlassC.K. Microglial cell origin and phenotypes in health and disease.Nat. Rev. Immunol.2011111177578710.1038/nri3086 22025055
    [Google Scholar]
  20. MantovaniA. BiswasS.K. GaldieroM.R. SicaA. LocatiM. Macrophage plasticity and polarization in tissue repair and remodelling.J. Pathol.2013229217618510.1002/path.4133 23096265
    [Google Scholar]
  21. HuX. LeakR.K. ShiY. SuenagaJ. GaoY. ZhengP. ChenJ. Microglial and macrophage polarization-New prospects for brain repair.Nat. Rev. Neurol.2015111566410.1038/nrneurol.2014.207 25385337
    [Google Scholar]
  22. MironV.E. BoydA. ZhaoJ.W. YuenT.J. RuckhJ.M. ShadrachJ.L. van WijngaardenP. WagersA.J. WilliamsA. FranklinR.J.M. Ffrench-ConstantC. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination.Nat. Neurosci.20131691211121810.1038/nn.3469 23872599
    [Google Scholar]
  23. Miguel-ÁlvarezM. Santos-LozanoA. Sanchis-GomarF. Fiuza-LucesC. Pareja-GaleanoH. GaratacheaN. LuciaA. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect.Drugs Aging201532213914710.1007/s40266‑015‑0239‑z 25644018
    [Google Scholar]
  24. HölscherC. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases.J. Endocrinol.20142211T31T4110.1530/JOE‑13‑0221 23999914
    [Google Scholar]
  25. EakinK. LiY. ChiangY.H. HofferB.J. RosenheimH. GreigN.H. MillerJ.P. Exendin-4 ameliorates traumatic brain injury-induced cognitive impairment in rats.PLoS One2013812e8201610.1371/journal.pone.0082016 24312624
    [Google Scholar]
  26. DarsaliaV. MansouriS. OrtsäterH. OlverlingA. NozadzeN. KappeC. IverfeldtK. TracyL.M. GrankvistN. SjöholmÅ. PatroneC. Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats.Clin. Sci. (Lond.)20121221047348310.1042/CS20110374 22150224
    [Google Scholar]
  27. ChenS. LiuA.R. AnF.M. YaoW.B. GaoX.D. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4.Age (Dordr.)20123451211122410.1007/s11357‑011‑9303‑8 21901364
    [Google Scholar]
  28. KimS. MoonM. ParkS. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease.J. Endocrinol.2009202343143910.1677/JOE‑09‑0132 19570816
    [Google Scholar]
  29. LiY. RosenblitP.D. Glucagon-like peptide-1 receptor agonists and cardiovascular risk reduction in Type 2 Diabetes mellitus: Is it a class effect?Curr. Cardiol. Rep.2018201111310.1007/s11886‑018‑1051‑2 30259238
    [Google Scholar]
  30. ZhouM. ChenS. PengP. GuZ. YuJ. ZhaoG. DengY. Dulaglutide ameliorates STZ induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and NFs through GSK3β.Biochem. Biophys. Res. Commun.2019511115416010.1016/j.bbrc.2019.01.103 30773255
    [Google Scholar]
  31. KimS.M. MunB.R. LeeS.J. JohY. LeeH.Y. JiK.Y. ChoiH.R. LeeE.H. KimE.M. JangJ.H. SongH.W. Mook-JungI. ChoiW.S. KangH.S. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia.Sci. Rep.2017711111810.1038/s41598‑017‑11634‑x 28894284
    [Google Scholar]
  32. ZhaoY. WuX. LiX. JiangL.L. GuiX. LiuY. SunY. ZhuB. Piña-CrespoJ.C. ZhangM. ZhangN. ChenX. BuG. AnZ. HuangT.Y. XuH. TREM2 is a receptor for β-amyloid that mediates microglial function.Neuron201897510231031.e710.1016/j.neuron.2018.01.031 29518356
    [Google Scholar]
  33. LeeJ. KimD.E. GriffinP. SheehanP.W. KimD.H. MusiekE.S. YoonS.Y. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease.Aging Cell2020192e1307810.1111/acel.13078 31800167
    [Google Scholar]
  34. ZhengX. GanH. LiL. HuX. FangY. ChuL. Astragaloside IV inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization.Zhejiang Da Xue Xue Bao Yi Xue Ban2020496679686 33448170
    [Google Scholar]
  35. Latta-MahieuM. ElmerB. BrettevilleA. WangY. Lopez-GranchaM. GoniotP. MoindrotN. FerrariP. BlancV. SchusslerN. BraultE. RoudièresV. BlanchardV. YangZ.Y. BarneoudP. BertrandP. RoucourtB. CarmansS. BottelbergsA. MertensL. WintmoldersC. LarsenP. HersleyC. McGatheyT. RackeM.M. LiuL. LuJ. O’NeillM.J. RiddellD.R. EbnethA. NabelG.J. PradierL. Systemic immune-checkpoint blockade with anti-PD1 antibodies does not alter cerebral amyloid-β burden in several amyloid transgenic mouse models.Glia201866349250410.1002/glia.23260 29134678
    [Google Scholar]
  36. PerryV.H. HolmesC. Microglial priming in neurodegenerative disease.Nat. Rev. Neurol.201410421722410.1038/nrneurol.2014.38 24638131
    [Google Scholar]
  37. PerryV.H. NicollJ.A. HolmesC. Microglia in neurodegenerative disease.Nat. Rev. Neurol.20106419320110.1038/nrneurol.2010.17 20234358
    [Google Scholar]
  38. FialaM. RestrepoL. PellegriniM. Immunotherapy of mild cognitive impairment by ω-3 supplementation: Why are amyloid-β antibodies and ω-3 not working in clinical trials?J. Alzheimers Dis.20186231013102210.3233/JAD‑170579 29103035
    [Google Scholar]
  39. MaezawaI. NguyenH.M. Di LucenteJ. JenkinsD.P. SinghV. HiltS. KimK. RangarajuS. LeveyA.I. WulffH. JinL.W. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer’s disease: Preclinical proof of concept.Brain2018141259661210.1093/brain/awx346 29272333
    [Google Scholar]
  40. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  41. ArcuriC. MeccaC. BianchiR. GiambancoI. DonatoR. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS.Front. Mol. Neurosci.20171019110.3389/fnmol.2017.00191 28674485
    [Google Scholar]
  42. AryanpourR. PasbakhshP. ZibaraK. NamjooZ. Beigi BoroujeniF. ShahbeigiS. KashaniI.R. BeyerC. ZendehdelA. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model.Int. Immunopharmacol.20175113113910.1016/j.intimp.2017.08.007 28830026
    [Google Scholar]
  43. O’HalloranS. O’LearyA. KuijperT. DownerE.J. MyD88 acts as an adaptor protein for inflammatory signalling induced by amyloid-β in macrophages.Immunol. Lett.201416211 Pt A10911810.1016/j.imlet.2014.08.001 25124962
    [Google Scholar]
  44. JiangD. GongF. GeX. LvC. HuangC. FengS. ZhouZ. RongY. WangJ. JiC. ChenJ. ZhaoW. FanJ. LiuW. CaiW. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes.J. Nanobiotechnol.202018110510.1186/s12951‑020‑00665‑8 32711535
    [Google Scholar]
/content/journals/cchts/10.2174/1386207325666220726163514
Loading
/content/journals/cchts/10.2174/1386207325666220726163514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test