Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim and Objective: The benzimidazole derivatives have been obtained via weightreducing aid (L-Carnitine) as a cheap catalyst. A wide range of aromatic aldehydes easily undergo condensations with substituted o-phenylendiamine under mild condition to afford the target molecular in excellent yields. Materials and Methods: Melting points were measured on an Electrothemal X6 microscopy digital melting point apparatus. 1H NMR and 13C NMR spectra were recorded in DMSO-d6 on a Bruker AVANCE 400 (400 MHz) instrument with the TMS at d 0.00 ppm as an internal standard. C, H and N analysis were performed by a Perkin-Elmer 2400 CHN elemental analyzer. Chemicals used were of commercial grade without further purification. An equimloar (1.0 mmol) mixture of o-phenylenediamine 1, aromatic aldehyde 2, and L-Carnitine (10 mol%) was vigorously stirred at 60°C in EtOH (3 mL) for the specific time indicated by TLC (petroleum: ethyl acetate ether = 4:1). After completion of the reaction, the mixture was quenched by adding H2O (20 mL), extracted with EtOAc (3 x 10 mL), and the combined extracts were dried by anhydrous MgSO4. The filtrate was evaporated and the corresponding benzimidazole was obtained as the only product. The products 3a–3r were obtained in 82–95% yields. The structures of the products 3 were identified by their IR, 1H NMR, 13C NMR and elemental analysis spectra. Results: The products were obtained in 82–95% yields in 30–80 min. The method has several advantages such as simple, clean and environmentally process, excellent yield and avoiding use of inconvenient preparation of catalyst. Meanwhile, the catalyst L-Carnitine is a kind of weightreducing aid, which might be applied to broad green catalyzed system. Conclusion: A facile synthesis of benzimidazoles comprising the reaction of various aldehydes with substituted o-phenylendiamine in good to excellent yield is provided using L-Carnitine as an efficient catalyst. The protocol overcomes the earlier disadvantages like harsh reaction conditions, tedious work-up, expensive process, wastes generation and the use of metallic oxide, which might be applied to the synthesis of benzimidazoles pharmaceticals in order to meet friendly environmental demands.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207321666181018163940
2018-09-01
2025-04-09
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207321666181018163940
Loading

  • Article Type:
    Research Article
Keyword(s): 2-arylbenzimidazoles; benzimidazole; catalysis; Green protocol; heterocycles; L-Carnitine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test