Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background: One key step in the development of inhibitors for an enzyme is the application of computational methodologies to predict protein-ligand interactions. The abundance of structural and ligand-binding information for HIV-1 protease opens up the possibility to apply computational methods to develop scoring functions targeted to this enzyme. Objective: Our goal here is to develop an integrated molecular docking approach to investigate protein-ligand interactions with a focus on the HIV-1 protease. In addition, with this methodology, we intend to build target-based scoring functions to predict inhibition constant (Ki) for ligands against the HIV-1 protease system. Methods: Here, we described a computational methodology to build datasets with decoys and actives directly taken from crystallographic structures to be applied in evaluation of docking performance using the program SAnDReS. Furthermore, we built a novel function using as terms MolDock and PLANTS scoring functions to predict binding affinity. To build a scoring function targeted to the HIV-1 protease, we have used machine-learning techniques. Results: The integrated approach reported here has been tested against a dataset comprised of 71 crystallographic structures of HIV protease, to our knowledge the largest HIV-1 protease dataset tested so far. Comparison of our docking simulations with benchmarks indicated that the present approach is able to generate results with improved accuracy. Conclusion: We developed a scoring function with performance higher than previously published benchmarks for HIV-1 protease. Taken together, we believe that the approach here described has the potential to improve docking accuracy in drug design projects focused on HIV-1 protease.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207320666171121110019
2017-11-01
2025-04-16
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207320666171121110019
Loading

  • Article Type:
    Research Article
Keyword(s): Docking; drug design; HIV-1 protease; machine learning; SAnDReS; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test