Skip to content
2000
Volume 17, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

1,3-dipolar cycloaddition procedure is one of the most widely practiced methods in order to synthesize heterocyclic compounds. Although, it seems very simple, but, there are numerous precursors of heterocyclic molecules who have more than one positions to react with a 1,3–dipole species. As a result, while using a precursor with more than one position for reaction, it is probable to synthesize several products with different structures. This paper studies all possible interactions of vinyl acetylene, which has two positions for reaction, with methyl azide. This reaction could lead to the emergence of any 1,3-dipolar cycloaddition products. Our ultimate goal is to help researchers to find out how precursors containing both carbon-carbon double, and the triple bonds interact with 1,3- dipolar species. The present study used the DFT calculations at B3LYP/6-311++G(3df,pd) level to check all probable interactions between vinyl acetylene and methyl azide, and determined Potential Energy Surface, and optimized all species.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620731708140922163855
2014-09-01
2025-04-16
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620731708140922163855
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test