Skip to content
2000
Volume 14, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In the last two decades, significant progress has been made on comparative modeling methods. Using the large number of protein structures deposited in the Protein Data Bank (∼65,000), automatic prediction pipelines are generating a tremendous number of models (∼1.9 million) for sequences whose structures have not been experimentally determined. Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620711795767811
2011-07-01
2024-11-23
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620711795767811
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test