Skip to content
2000
Volume 12, Issue 5
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Accurate classification of instances depends on identification and removal of redundant features. Classification of data having high dimensionality is usually performed in conjunction with an appropriate feature selection method. Feature selection enables identification of the most informative feature subset from the enormously vast search space that can accurately classify the given data. We propose an ant colony optimization (ACO)/random forest based hybrid filterwrapper search technique, which traverses the search space and selects a feature subset with high classifying ability. We evaluate the performance of our algorithm on four widely studied CoEPrA (Comparative Evaluation of Prediction Algorithms, http://coepra.org) datasets. The performance of the software ants mediated hybrid filter/wrapper approach compares well with the available competition results. Thus, the proposed Ant Colony Optimization based technique can effectively find small feature subsets capable of classifying with a very good accuracy and can be employed for feature subset selection with a high level of confidence.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620709788488993
2009-06-01
2025-07-03
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620709788488993
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test