Skip to content
2000
Volume 12, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Building accurate quantitative structure-activity relationships (QSAR) is important in drug design, environmental modeling, toxicology, and chemical property prediction. QSAR methods can be utilized to solve mainly two types of problems viz., pattern recognition, (or classification) where output is discrete (i.e. class information), e.g., active or non-active molecule, binding or non-binding molecule etc., and function approximation, (i.e. regression) where the output is continuous (e.g., actual activity prediction). The present review deals with the second type of problem (regression) with specific attention to one of the most effective machine learning procedures, viz. lazy learning. The methodologies of the algorithm along with the relevant technical information are discussed in detail. We also present three real life case studies to briefly outline the typical characteristics of the modeling formalism.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620709788167908
2009-05-01
2025-06-21
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620709788167908
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test