Skip to content
2000
Volume 9, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

A process has been developed whereby libraries of compounds for lead optimization can be synthesized and screened with greater efficiency using computational tools. In this method, analogues of a lead chemical structure are considered in the form of a virtual library. Less than 1/3 of the library is selected as a training set by clustering the compounds and choosing the centroid of each cluster. This training set is then used to generate a model using PLS regression upon the experimental values from that assay using 1D/2D descriptors. The model is applied to the remaining compounds (the test set) for which assay values are predicted and a rank ordering established. An example of this was a set of 169 PDE4 inhibitors. A predictive model was achieved using a training set of 52 compounds. When applied to the remaining 117 compounds this model allowed a rank ordering of these compounds for synthesis and testing. Selecting the top 33 compounds of the test set gives 78% of the compounds with the desired activity (hits) by synthesizing only 50% of the library, including the training set. Selecting the top 59 of the test set gives 97% of the hits from only 67% of the library. This process succeeds by avoiding two principal weaknesses of 2D descriptors: lack of interpretation and lack of extrapolation. Two principal assumptions of QSAR are shown to be unnecessary; removing descriptor redundancy does not improve fit and a predictive r2 greater than 0.5 is not necessary if rank-ordering is desired.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620706775541846
2006-02-01
2025-06-21
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620706775541846
Loading

  • Article Type:
    Research Article
Keyword(s): 1D/2D descriptors; binary fingerprints; dithiothreitol; QSAR; Scripting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test