Skip to content
2000
Volume 8, Issue 6
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

An oligonucleotide-based mutagenesis method is presented where, contrary to most classical mutagenic approaches, preselection of the variants is performed at the oligonucleotide level to avoid cloning of non-desired sequences. The method relies on the generation of differentially phosphate-protected oligonucleotides. Protection of the phosphates is accomplished by substoichiometric incorporation of an Fmoc-protected and n-propyl-protected trinucleotide phosphoramidite during ordinary oligonucleotide assembly. Instead of the alkali-labile ß-cyanoethyl group introduced in ordinary assembly, the trinucleotide introduces the alkali-stable n-propyl group. As a result, single mutants carry three ionic phosphates less than the wild-type sequence, double mutants carry six ionic phosphates less and so on. This difference in ionic ratio enables separation of the variants by conventional polyacrilamide gel electrophoresis. In the exemplified library described herein, two sub-populations containing mainly triple and quadruple mutants were selected out of five possible sub-populations.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207054867355
2005-09-01
2025-04-10
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/1386207054867355
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test