Full text loading...
-
High Throughput Screening of Genetic Polymorphisms by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
- Source: Combinatorial Chemistry & High Throughput Screening, Volume 7, Issue 8, Dec 2004, p. 707 - 725
-
- 01 Dec 2004
- Previous Article
- Table of Contents
- Next Article
Abstract
In the post genomic era, the screening of many different genetic polymorphisms in large populations represents a major goal that will facilitate the understanding of individual genetic variability in the development of multi factor diseases and in drug response and toxicities. The increasing interest in these pathogenetic and pharmacogenomic studies by both academic and pharmaceutical industry researchers has increased the demand for broad genome association studies. This demand has produced a boom in the development of new and robust high throughput screening methods for genotype analysis. Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents an emerging and powerful technique for DNA analysis because of its high speed, accuracy, no label requirement, and costeffectiveness. So far, many MALDI-TOF MS approaches have been developed for rapid screening of single nucleotide polymorphisms (SNPs), variable sequences repeat, epigenotype analysis, quantitative allele studies, and for the discovery of new genetic polymorphisms. The more established methods are based on single base primer extension and minisequencing implemented with new chemical features to overcome the limitations associated with DNA analysis using MALDI-TOF MS. These new promising methods of genotyping include both photochemical and other different chemical and enzyme cleavage strategies that facilitate sample automation and MS analysis for both real-time genotyping and resequencing screening. In this review, we analyze and discuss in depth the advantages and the limitations of the more recent developments in MALDITOF MS analysis for large-scale genomic studies applications.