Skip to content
2000
image of Quercetin Inhibits Ectopic Lesion Formation in Mice by Modulating the MAT2A/PRMT5 Pathway through PPARγ Activation

Abstract

Objective

This study aimed examine the impact of quercetin on a mouse model of endometriosis and elucidate its underlying mechanisms.

Methods

An endometriosis model was established using C57BL/6 mice, which were divided into three groups: 1) sham group, 2) model group, and 3) model group treated with daily gavage administration of 100 mg/kg/d quercetin. After three weeks, mice were euthanized, and histopathological examination was performed using hematoxylin and eosin (HE) staining. , and the expression level of S-adenosylmethionine (SAM) was measured using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry was employed to evaluate the expressions of Ki67, vimentin, vascular endothelial growth factor (VEGF), and Caspase-1.

Results

The endometriosis mice model was successfully established and characterized by ectopic lesions displaying transparent or red vesicular or nodular features with a visible vascular network on the surface. In the model group, endometrial epithelial hyperplasia exhibited columnar morphology, increased mesenchymal cell numbers, and regular cell morphology. Conversely, in the medication group, endometrial stromal cell numbers were sparse, cell morphology was irregular, and numerous vacuoles were observed in the endometrial tissue, indicative of apoptotic cell morphology changes. . MAT2A, PRMT5, cyclin D1, and C-MYC expressions were increased, and vimentin, Ki67, VEGF, and caspase-1 expressions were strongly positive, with statistically significant differences (P < 0.05). In contrast, compared to the model group, the quercetin intervention group exhibited significantly reduced ectopic lesion weights, increased PPARγ expression, and significantly reduced protein expression levels of MAT2A, PRMT5, SAM, cyclin D1, and C-MYC. Furthermore, expressions of vimentin, Ki67, VEGF, and caspase-1 were weakly positive, with statistically significant differences (P < 0.05).

Conclusion

Quercetin modulated the transcription of the MAT2A/PRMT5 gene by activating PPARγ activity, thereby influencing the ectopic implantation and growth of endometrial cells.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073379671250219103011
2025-02-24
2025-04-24
Loading full text...

Full text loading...

References

  1. Vercellini P. Buggio L. Berlanda N. Barbara G. Somigliana E. Bosari S. Estrogen-progestins and progestins for the management of endometriosis. Fertil. Steril. 2016 106 7 1552 1571.e2 10.1016/j.fertnstert.2016.10.022 27817837
    [Google Scholar]
  2. Munksgaard P.S. Blaakaer J. The association between endometriosis and ovarian cancer: A review of histological, genetic and molecular alterations. Gynecol. Oncol. 2012 124 1 164 169 10.1016/j.ygyno.2011.10.001 22032835
    [Google Scholar]
  3. Okeke T.C. Ikeako L.C. Ezenyeaku C.C. Endometriosis. Niger. J. Med. 2011 20 2 191 199 21970227
    [Google Scholar]
  4. Becker C.M. Bokor A. Heikinheimo O. Horne A. Jansen F. Kiesel L. King K. Kvaskoff M. Nap A. Petersen K. Saridogan E. Tomassetti C. van Hanegem N. Vulliemoz N. Vermeulen N. Altmäe S. Ata B. Ball E. Barra F. Bastu E. Bianco-Anil A. Knudsen U.B. Brubel R. Cambitzi J. Cantineau A. Cheong Y. Daniilidis A. De Bie B. Exacoustos C. Ferrero S. Gelbaya T. Goetz-Collinet J. Hudelist G. Hussain M. Indrielle-Kelly T. Khazali S. Kumar S.L. Leone Roberti Maggiore U. Maas J.W.M. McLaughlin H. Metello J. Mijatovic V. Miremadi Y. Muteshi C. Nisolle M. Oral E. Pados G. Parades D. Pluchino N. Supramaniam P.R. Schick M. Seeber B. Seracchioli R. Laganà A.S. Stavroulis A. Tebache L. Uncu G. Van den Broeck U. van Peperstraten A. Vereczkey A. Wolthuis A. Bahat P.Y. Yazbeck C. ESHRE guideline: Endometriosis. Hum. Reprod. Open 2022 2022 2 hoac009 10.1093/hropen/hoac009 35350465
    [Google Scholar]
  5. Donnez J. Dolmans M.M. Endometriosis and medical therapy: From progestogens to progesterone resistance to GnRH antagonists: A review. J. Clin. Med. 2021 10 5 1085 10.3390/jcm10051085 33807739
    [Google Scholar]
  6. Facchin F. Buggio L. Ottolini F. Barbara G. Saita E. Vercellini P. Preliminary insights on the relation between endometriosis, pelvic pain, and employment. Gynecol. Obstet. Invest. 2019 84 2 190 195 10.1159/000494254 30380545
    [Google Scholar]
  7. Surguchov A. Bernal L. Surguchev A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021 11 5 624 10.3390/biom11050624 33922207
    [Google Scholar]
  8. Throwba H. Unnikrishnan L. Pangath M. Vasudevan K. Jayaraman S. Li M. Iyaswamy A. Palaniyandi K. Gnanasampanthapandian D. The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit. Rev. Oncol. Hematol. 2022 180 103852 10.1016/j.critrevonc.2022.103852 36283585
    [Google Scholar]
  9. Wang X. Shi Y. Xu L. Wang Z. Wang Y. Shi W. Ma K. Traditional Chinese medicine prescription Guizhi Fuling Pills in the treatment of endometriosis. Int. J. Med. Sci. 2021 18 11 2401 2408 10.7150/ijms.55789 33967618
    [Google Scholar]
  10. Wang H. Zhou G. Zhuang M. Wang W. Fu X. Utilizing network pharmacology and molecular docking to explore the underlying mechanism of Guizhi Fuling Wan in treating endometriosis. PeerJ 2021 9 e11087 10.7717/peerj.11087 33859874
    [Google Scholar]
  11. Wu Y. Zhu Y. Xie N. Wang H. Wang F. Zhou J. Qu F. A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis. PLoS One 2022 17 2 e0263614 10.1371/journal.pone.0263614 35130311
    [Google Scholar]
  12. Zhu J. Xue X. He Z. Zhang J. Sun H. Using network pharmacology and molecular docking to explore the underlying anti-inflammatory mechanism of Wuyao-Danshen to treat endometriosis. Ann. Transl. Med. 2022 10 4 198 10.21037/atm‑22‑419 35280377
    [Google Scholar]
  13. Jamali N. Zal F. Mostafavi-Pour Z. Samare-Najaf M. Poordast T. Dehghanian A. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reprod. Sci. 2021 28 3 683 692 10.1007/s43032‑020‑00377‑2 33141412
    [Google Scholar]
  14. Signorile P.G. Viceconte R. Baldi A. Novel dietary supplement association reduces symptoms in endometriosis patients. J. Cell. Physiol. 2018 233 8 5920 5925 10.1002/jcp.26401 29243819
    [Google Scholar]
  15. Fadin M. Nicoletti M.C. Pellizzato M. Accardi M. Baietti M.G. Fratter A. Effectiveness of the integration of quercetin, turmeric, and N-acetylcysteine in reducing inflammation and pain associated with endometriosis. In-vitro and in-vivo studies. Minerva Ginecol. 2020 72 5 285 291 10.23736/S0026‑4784.20.04615‑8 32921020
    [Google Scholar]
  16. Jian X. Shi C. Luo W. Zhou L. Jiang L. Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed. Pharmacother. 2024 173 116418 Epub ahead of print 10.1016/j.biopha.2024.116418 38461683
    [Google Scholar]
  17. Yalçın Bahat P. Ayhan I. Üreyen Özdemir E. İnceboz Ü. Oral E. Dietary supplements for treatment of endometriosis: A review. Acta Biomed. 2022 93 1 e2022159 10.23750/abm.v93i1.11237 35315418
    [Google Scholar]
  18. Xia L.M. Zhang A.P. Zheng Q. Ding J. Jin Z. Yu H. Wong W.H. Yu H.P. Quercetin-3-O-D-glucuronide inhibits mitochondria pathway-mediated platelet apoptosis via the phosphatidylinositol-3-kinase/ AKT pathway in immunological bone marrow failure. World J. Tradit. Chin. Med. 2022 8 1 115 122 10.4103/wjtcm.wjtcm_44_21
    [Google Scholar]
  19. Semple R.K. Chatterjee V.K. O’Rahilly S. PPAR and human metabolic disease. J. Clin. Invest. 2006 116 3 581 589 10.1172/JCI28003 16511590
    [Google Scholar]
  20. Clemenza S. Sorbi F. Noci I. Capezzuoli T. Turrini I. Carriero C. Buffi N. Fambrini M. Petraglia F. From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2018 51 92 101 10.1016/j.bpobgyn.2018.01.021 29559388
    [Google Scholar]
  21. Murray B. Barbier-Torres L. Fan W. Mato J.M. Lu S.C. Methionine adenosyltransferases in liver cancer. World J. Gastroenterol. 2019 25 31 4300 4319 10.3748/wjg.v25.i31.4300 31496615
    [Google Scholar]
  22. Li C. Gui G. Zhang L. Qin A. Zhou C. Zha X. Overview of methionine Adenosyltransferase 2A (MAT2A) as an anticancer target: Structure, function, and inhibitors. J. Med. Chem. 2022 65 14 9531 9547 10.1021/acs.jmedchem.2c00395 35796517
    [Google Scholar]
  23. Hwang J.W. Cho Y. Bae G.U. Kim S.N. Kim Y.K. Protein arginine methyltransferases: Promising targets for cancer therapy. Exp. Mol. Med. 2021 53 5 788 808 10.1038/s12276‑021‑00613‑y 34006904
    [Google Scholar]
  24. Chen Q. Zhang C. Chen Y. Lou J. Wang D. Identification of endometriosis‐related genes by representational difference analysis of cDNA. Aust. N. Z. J. Obstet. Gynaecol. 2012 52 2 140 145 10.1111/j.1479‑828X.2011.01405.x 22276910
    [Google Scholar]
  25. Zhang S. Zhuang L. Liu Q. Yu X. Min Q. Chen M. Chen Q. PPARγ induces the paroxysm of endometriosis by regulating the transcription of MAT2A gene. Am. J. Transl. Res. 2021 13 3 1377 1388 33841663
    [Google Scholar]
  26. Zhang S. Zhuang L. Liu Q. Yu X. Min Q. Chen M. Chen Q. Rosiglitazone affects the progression of surgically‑induced endometriosis in a rat model. Mol. Med. Rep. 2020 23 1 1 10.3892/mmr.2020.11673 33179107
    [Google Scholar]
  27. Lokhande K.B. Ballav S. Thosar N. Swamy K.V. Basu S. Exploring conformational changes of PPAR-Ɣ complexed with novel kaempferol, quercetin, and resveratrol derivatives to understand binding mode assessment: A small-molecule checkmate to cancer therapy. J. Mol. Model. 2020 26 9 242 10.1007/s00894‑020‑04488‑0 32816149
    [Google Scholar]
  28. Doi M. Morita N. Okuzawa T. Ohgiya S. Okamoto D. Sato K. Ito Y. Matsuura H. Hashidoko Y. Pinellic acid isolated from quercetin-rich onions has a peroxisome proliferator-activated receptor-Alpha/Gamma (PPAR-α/γ) transactivation activity. Planta Med. 2022 88 6 440 446 10.1055/a‑1345‑9471 35038752
    [Google Scholar]
  29. Yang Y. Shi G. Wu X. Xu M. Chen C. Zhou Y. Wei Y. Wu L. Cui F. Sun L. Zhang T. Quercetin impedes Th17 cell differentiation to mitigate arthritis involving PPARγ‐driven transactivation of SOCS3 and redistribution corepressor SMRT from PPARγ to STAT3. Mol. Nutr. Food Res. 2022 66 12 2100826 10.1002/mnfr.202100826 35384292
    [Google Scholar]
  30. Markowska A. Antoszczak M. Markowska J. Huczyński A. The role of selected dietary factors in the development and course of endometriosis. Nutrients 2023 15 12 2773 10.3390/nu15122773 37375677
    [Google Scholar]
  31. Zondervan K.T. Becker C.M. Missmer S.A. Endometriosis. N. Engl. J. Med. 2020 382 13 1244 1256 10.1056/NEJMra1810764 32212520
    [Google Scholar]
  32. Bina F. Soleymani S. Toliat T. Hajimahmoodi M. Tabarrai M. Abdollahi M. Rahimi R. Plant-derived medicines for treatment of endometriosis: A comprehensive review of molecular mechanisms. Pharmacol. Res. 2019 139 76 90 10.1016/j.phrs.2018.11.008 30412733
    [Google Scholar]
  33. Park S. Lim W. Bazer F.W. Whang K.Y. Song G. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J. Nutr. Biochem. 2019 63 87 100 10.1016/j.jnutbio.2018.09.024 30359864
    [Google Scholar]
  34. Xu W. Song Y. Li K. Zhang B. Zhu X. Quercetin inhibits adenomyosis by attenuating cell proliferation, migration and invasion of ectopic endometrial stromal cells. Drug Des. Devel. Ther. 2020 14 3815 3826 10.2147/DDDT.S265066 33061289
    [Google Scholar]
  35. Cao Y. Zhuang M. Yang Y. Xie S. Cui J. Cao L. Zhang T. Zhu Y. Preliminary study of quercetin affecting the hypothalamic-pituitary-gonadal axis on rat endometriosis model. Evid. Based Complement. Alternat. Med. 2014 2014 1 781684 10.1155/2014/781684 25530789
    [Google Scholar]
  36. Loy C.J. Evelyn S. Lim F.K. Liu M.H. Yong E.L. Growth dynamics of human leiomyoma cells and inhibitory effects of the peroxisome proliferator-activated receptor-γ ligand, pioglitazone. Mol. Hum. Reprod. 2005 11 8 561 566 10.1093/molehr/gah199 16051682
    [Google Scholar]
  37. Heaney A.P. Fernando M. Melmed S. PPAR-γ receptor ligands: Novel therapy for pituitary adenomas. J. Clin. Invest. 2003 111 9 1381 1388 10.1172/JCI200316575 12727930
    [Google Scholar]
  38. Nenicu A. Körbel C. Gu Y. Menger M.D. Laschke M.W. Combined blockade of angiotensin II type 1 receptor and activation of peroxisome proliferator-activated receptor- by telmisartan effectively inhibits vascularization and growth of murine endometriosis-like lesions. Hum. Reprod. 2014 29 5 1011 1024 10.1093/humrep/deu035 24578472
    [Google Scholar]
  39. Aytan H. Caliskan A.C. Demirturk F. Aytan P. Koseoglu D.R. Peroxisome proliferator‐activated receptor‐gamma agonist rosiglitazone reduces the size of experimental endometriosis in the rat model. Aust. N. Z. J. Obstet. Gynaecol. 2007 47 4 321 325 10.1111/j.1479‑828X.2007.00744.x 17627689
    [Google Scholar]
  40. Demirturk F. Aytan H. Caliskan A.C. Aytan P. Koseoglu D.R. Effect of peroxisome proliferator-activated receptor-gamma agonist rosiglitazone on the induction of endometriosis in an experimental rat model. J. Soc. Gynecol. Investig. 2006 13 1 58 62 10.1016/j.jsgi.2005.10.002 16378914
    [Google Scholar]
  41. Lebovic D.I. Mwenda J.M. Chai D.C. Santi A. Xu X. D’Hooghe T. Peroxisome proliferator-activated receptor-(gamma) receptor ligand partially prevents the development of endometrial explants in baboons: A prospective, randomized, placebo-controlled study. Endocrinology 2010 151 4 1846 1852 10.1210/en.2009‑1076 20160135
    [Google Scholar]
  42. Marjon K. Cameron M.J. Quang P. Clasquin M.F. Mandley E. Kunii K. McVay M. Choe S. Kernytsky A. Gross S. Konteatis Z. Murtie J. Blake M.L. Travins J. Dorsch M. Biller S.A. Marks K.M. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 2016 15 3 574 587 10.1016/j.celrep.2016.03.043 27068473
    [Google Scholar]
  43. Muniyandi A. Martin M. Sishtla K. Motolani A. Sun M. Jensen N.R. Qi X. Boulton M.E. Prabhu L. Lu T. Corson T.W. PRMT5 is a therapeutic target in choroidal neovascularization. Sci. Rep. 2023 13 1 1747 10.1038/s41598‑023‑28215‑w 36720900
    [Google Scholar]
  44. Chung J. Karkhanis V. Tae S. Yan F. Smith P. Ayers L.W. Agostinelli C. Pileri S. Denis G.V. Baiocchi R.A. Sif S. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J. Biol. Chem. 2013 288 49 35534 35547 10.1074/jbc.M113.510669 24189068
    [Google Scholar]
  45. Chung J. Karkhanis V. Baiocchi R.A. Sif S. Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/β-catenin and AKT/GSK3β proliferative signaling. J. Biol. Chem. 2019 294 19 7692 7710 10.1074/jbc.RA119.007640 30885941
    [Google Scholar]
  46. Shailesh H. Siveen K.S. Sif S. Protein arginine methyltransferase 5 (PRMT5) activates WNT/β‐catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3. J. Cell. Mol. Med. 2021 25 3 1583 1600 10.1111/jcmm.16260 33462997
    [Google Scholar]
  47. Diao C. Chen Z. Qiu T. Liu H. Yang Y. Liu X. Wu J. Wang L. Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2019 2019 1 18 10.1155/2019/2345658 31885778
    [Google Scholar]
  48. Aghajanova L. Horcajadas J.A. Weeks J.L. Esteban F.J. Nezhat C.N. Conti M. Giudice L.C. The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis. Endocrinology 2010 151 3 1341 1355 10.1210/en.2009‑0923 20068008
    [Google Scholar]
  49. Wang J. Wu H. Wang X. Zhao X. Sun L. Cheng Y. Jiang X. Li J. Zhang G. CPEB3, an RNA-binding protein, modulates the behavior of endometriosis-derived stromal cells via regulating CXCL12. DNA Cell Biol. 2022 41 6 606 616 10.1089/dna.2021.1017 35451884
    [Google Scholar]
  50. A’yuni D.Q. Sa’adi A. Widjiati W. Ethanol extract of basil ( Ocimum Basilicum L.) leaves inhibits endometriosis growth in a mouse model by modulating vascular endothelial growth factor (VEGF) expression. J. Med. Life 2023 16 8 1224 1230 10.25122/jml‑2023‑0225 38024822
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073379671250219103011
Loading
/content/journals/cchts/10.2174/0113862073379671250219103011
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: MAT2A ; PRMT5 ; PPARγ ; Endometriosis ; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test