Skip to content
2000
image of Advances in Targeting Neutrophil Extracellular Traps as a Promising 
Approach for Breast Cancer Treatment

Abstract

Neutrophils release neutrophil extracellular traps (NETs), a reticular structure mainly composed of antimicrobial peptides, DNA, and histones. Neutrophil elastase (NE), matrix metalloproteinase-9, and histone G are the key components of NETs critically involved in breast cancer invasion and migration, which suggests an important role of NETs in tumorigenesis and metastasis. Studies have reported that NETs significantly promote breast cancer invasion, intravascular infiltration, and distant metastasis by inducing epithelial-mesenchymal transition (EMT), remodeling the extracellular matrix, and modulating the immune microenvironment. Meanwhile, NETs also function crucially in capturing circulating tumor cells, forming a pre-metastatic microenvironment, and awakening dormant cancer cells. Notably, NETs are also closely associated with chemotherapy and immunotherapy resistance in breast cancer. Therapeutic strategies targeting NETs, including DNase I, PAD4 inhibitors, elastase inhibitors, and histone C inhibitors, have been widely studied. These targeted therapies can effectively suppress the generation of NETs, improve drug efficacy, and delay tumor metastasis. This review aimed to systematically elucidate the mechanism of action of NETs in the progression and drug resistance of breast cancer and explore potential targeted therapeutic strategies against NETs. These strategies could effectively inhibit the generation of NETs, delay the progression of breast cancer, and improve therapeutic efficacy. An in-depth study of the mechanism of action of NETs and the clinical significance of their targeted interventions is expected to provide a new direction for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073376243250130060239
2025-02-26
2025-03-28
Loading full text...

Full text loading...

References

  1. Loibl S. Poortmans P. Morrow M. Denkert C. Curigliano G. Breast cancer. Lancet 2021 397 10286 1750 1769 10.1016/S0140‑6736(20)32381‑3 33812473
    [Google Scholar]
  2. Pourhanifeh M.H. Farrokhi-Kebria H. Mostanadi P. Farkhondeh T. Samarghandian S. Anticancer properties of baicalin against breast cancer and other gynecological cancers: Therapeutic opportunities based on underlying mechanisms. Curr. Mol. Pharmacol. 2024 17 e18761429263063 10.2174/0118761429263063231204095516 38284731
    [Google Scholar]
  3. Giaquinto A.N. Sung H. Newman L.A. Freedman R.A. Smith R.A. Star J. Jemal A. Siegel R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024 74 6 477 495 10.3322/caac.21863 39352042
    [Google Scholar]
  4. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  5. Dvir K. Giordano S. Leone J.P. Immunotherapy in breast cancer. Int. J. Mol. Sci. 2024 25 14 7517 10.3390/ijms25147517 39062758
    [Google Scholar]
  6. Talebi M. Farkhondeh T. Harifi-Mood M.S. Talebi M. Samarghandian S. Mechanistic features and therapeutic implications related to the MiRNAs and Wnt signaling regulatory in breast cancer. Curr. Mol. Pharmacol. 2023 16 5 530 541 36263474
    [Google Scholar]
  7. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 2020 108 1 377 396 10.1002/JLB.4MIR0220‑574RR 32202340
    [Google Scholar]
  8. Lecot P. Sarabi M. Pereira Abrantes M. Mussard J. Koenderman L. Caux C. Bendriss-Vermare N. Michallet M.C. Neutrophil heterogeneity in cancer: From biology to therapies. Front. Immunol. 2019 10 2155 10.3389/fimmu.2019.02155 31616408
    [Google Scholar]
  9. Demkow U. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers (Basel) 2021 13 17 4495 10.3390/cancers13174495 34503307
    [Google Scholar]
  10. Wu Y. Ma J. Yang X. Nan F. Zhang T. Ji S. Rao D. Feng H. Gao K. Gu X. Jiang S. Song G. Pan J. Zhang M. Xu Y. Zhang S. Fan Y. Wang X. Zhou J. Yang L. Fan J. Zhang X. Gao Q. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell 2024 187 6 1422 1439.e24 10.1016/j.cell.2024.02.005 38447573
    [Google Scholar]
  11. Brinkmann V. Reichard U. Goosmann C. Fauler B. Uhlemann Y. Weiss D.S. Weinrauch Y. Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004 303 5663 1532 1535 10.1126/science.1092385 15001782
    [Google Scholar]
  12. Demers M. Krause D.S. Schatzberg D. Martinod K. Voorhees J.R. Fuchs T.A. Scadden D.T. Wagner D.D. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA 2012 109 32 13076 13081 10.1073/pnas.1200419109 22826226
    [Google Scholar]
  13. Masucci M.T. Minopoli M. Del Vecchio S. Carriero M.V. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front. Immunol. 2020 11 1749 10.3389/fimmu.2020.01749 33042107
    [Google Scholar]
  14. Zheng C. Xu X. Wu M. Xue L. Zhu J. Xia H. Ding S. Fu S. Wang X. Wang Y. He G. Liu X. Deng X. Neutrophils in triple-negative breast cancer: An underestimated player with increasingly recognized importance. Breast Cancer Res. 2023 25 1 88 10.1186/s13058‑023‑01676‑7 37496019
    [Google Scholar]
  15. Snoderly H.T. Boone B.A. Bennewitz M.F. Neutrophil extracellular traps in breast cancer and beyond: Current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019 21 1 145 10.1186/s13058‑019‑1237‑6 31852512
    [Google Scholar]
  16. De Meo M.L. Spicer J.D. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin. Immunol. 2021 57 101595 10.1016/j.smim.2022.101595 35125298
    [Google Scholar]
  17. Oklu R. Sheth R.A. Wong K.H.K. Jahromi A.H. Albadawi H. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc. Diagn. Ther. 2017 7 S3 Suppl. 3 S140 S149 10.21037/cdt.2017.08.01 29399517
    [Google Scholar]
  18. Berger-Achituv S. Brinkmann V. Abed U.A. Kühn L.I. Ben-Ezra J. Elhasid R. Zychlinsky A. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front. Immunol. 2013 4 48 10.3389/fimmu.2013.00048 23508552
    [Google Scholar]
  19. Erpenbeck L. Schön M.P. Neutrophil extracellular traps: Protagonists of cancer progression? Oncogene 2017 36 18 2483 2490 10.1038/onc.2016.406 27941879
    [Google Scholar]
  20. Zha C. Meng X. Li L. Mi S. Qian D. Li Z. Wu P. Hu S. Zhao S. Cai J. Liu Y. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol. Med. 2020 17 1 154 168 10.20892/j.issn.2095‑3941.2019.0353 32296583
    [Google Scholar]
  21. Kajioka H. Kagawa S. Ito A. Yoshimoto M. Sakamoto S. Kikuchi S. Kuroda S. Yoshida R. Umeda Y. Noma K. Tazawa H. Fujiwara T. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Lett. 2021 497 1 13 10.1016/j.canlet.2020.10.015 33065249
    [Google Scholar]
  22. Vestweber D. VE-Cadherin. Arterioscler. Thromb. Vasc. Biol. 2008 28 2 223 232 10.1161/ATVBAHA.107.158014 18162609
    [Google Scholar]
  23. Jiang Z.Z. Peng Z.P. Liu X.C. Guo H.F. Zhou M.M. Jiang D. Ning W.R. Huang Y.F. Zheng L. Wu Y. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells. OncoImmunology 2022 11 1 2052418 10.1080/2162402X.2022.2052418 35309732
    [Google Scholar]
  24. Najmeh S. Cools-Lartigue J. Rayes R.F. Gowing S. Vourtzoumis P. Bourdeau F. Giannias B. Berube J. Rousseau S. Ferri L.E. Spicer J.D. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions. Int. J. Cancer 2017 140 10 2321 2330 10.1002/ijc.30635 28177522
    [Google Scholar]
  25. Castaño M. Tomás-Pérez S. González-Cantó E. Aghababyan C. Mascarós-Martínez A. Santonja N. Herreros-Pomares A. Oto J. Medina P. Götte M. Mc Cormack B.A. Marí-Alexandre J. Gilabert-Estellés J. Neutrophil extracellular traps and cancer: Trapping our attention with their involvement in ovarian cancer. Int. J. Mol. Sci. 2023 24 6 5995 10.3390/ijms24065995 36983067
    [Google Scholar]
  26. Feng L. Dong Z. Tao D. Zhang Y. Liu Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Natl. Sci. Rev. 2018 5 2 269 286 10.1093/nsr/nwx062
    [Google Scholar]
  27. Kolaczkowska E. Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013 13 3 159 175 10.1038/nri3399 23435331
    [Google Scholar]
  28. Tohme S. Yazdani H.O. Al-Khafaji A.B. Chidi A.P. Loughran P. Mowen K. Wang Y. Simmons R.L. Huang H. Tsung A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016 76 6 1367 1380 10.1158/0008‑5472.CAN‑15‑1591 26759232
    [Google Scholar]
  29. Schoeps B. Eckfeld C. Prokopchuk O. Böttcher J. Häußler D. Steiger K. Demir I.E. Knolle P. Soehnlein O. Jenne D.E. Hermann C.D. Krüger A. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer. Cancer Res. 2021 81 13 3568 3579 10.1158/0008‑5472.CAN‑20‑4125 33941611
    [Google Scholar]
  30. Garley M. Jabłońska E. Dąbrowska D. NETs in cancer. Tumour Biol. 2016 37 11 14355 14361 10.1007/s13277‑016‑5328‑z 27614687
    [Google Scholar]
  31. Ravindran M. Khan M.A. Palaniyar N. Neutrophil extracellular trap formation: Physiology, pathology, and pharmacology. Biomolecules 2019 9 8 365 10.3390/biom9080365 31416173
    [Google Scholar]
  32. Yin Y. Dai H. Sun X. Xi Z. Zhang J. Pan Y. Huang Y. Ma X. Xia Q. He K. HRG inhibits liver cancer lung metastasis by suppressing neutrophil extracellular trap formation. Clin. Transl. Med. 2023 13 6 e1283 10.1002/ctm2.1283 37254661
    [Google Scholar]
  33. Mowery Y.M. Luke J.J. NETosis impact on tumor biology, radiation, and systemic therapy resistance. Clin. Cancer Res. 2024 30 18 3965 3967 10.1158/1078‑0432.CCR‑24‑1363 39007757
    [Google Scholar]
  34. Mousset A. Lecorgne E. Bourget I. Lopez P. Jenovai K. Cherfils-Vicini J. Dominici C. Rios G. Girard-Riboulleau C. Liu B. Spector D.L. Ehmsen S. Renault S. Hego C. Mechta-Grigoriou F. Bidard F.C. Terp M.G. Egeblad M. Gaggioli C. Albrengues J. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 2023 41 4 757 775.e10 10.1016/j.ccell.2023.03.008 37037615
    [Google Scholar]
  35. Yang L. Liu Q. Zhang X. Liu X. Zhou B. Chen J. Huang D. Li J. Li H. Chen F. Liu J. Xing Y. Chen X. Su S. Song E. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 2020 583 7814 133 138 10.1038/s41586‑020‑2394‑6 32528174
    [Google Scholar]
  36. Teijeira Á. Garasa S. Gato M. Alfaro C. Migueliz I. Cirella A. de Andrea C. Ochoa M.C. Otano I. Etxeberria I. Andueza M.P. Nieto C.P. Resano L. Azpilikueta A. Allegretti M. de Pizzol M. Ponz-Sarvisé M. Rouzaut A. Sanmamed M.F. Schalper K. Carleton M. Mellado M. Rodriguez-Ruiz M.E. Berraondo P. Perez-Gracia J.L. Melero I. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 2020 52 5 856 871.e8 10.1016/j.immuni.2020.03.001 32289253
    [Google Scholar]
  37. Shen X.T. Xie S.Z. Zheng X. Zou T.T. Hu B.Y. Xu J. Liu L. Xu Y.F. Wang X.F. Wang H. Wang S. Zhu L. Yu K.K. Zhu W.W. Lu L. Zhang J.B. Chen J.H. Dong Q.Z. Yang L.Y. Qin L.X. Cirrhotic-extracellular matrix attenuates aPD-1 treatment response by initiating immunosuppressive neutrophil extracellular traps formation in hepatocellular carcinoma. Exp. Hematol. Oncol. 2024 13 1 20 10.1186/s40164‑024‑00476‑9 38388466
    [Google Scholar]
  38. Taifour T. Attalla S.S. Zuo D. Gu Y. Sanguin-Gendreau V. Proud H. Solymoss E. Bui T. Kuasne H. Papavasiliou V. Lee C.G. Kamle S. Siegel P.M. Elias J.A. Park M. Muller W.J. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity 2023 56 12 2755 2772.e8 10.1016/j.immuni.2023.11.002 38039967
    [Google Scholar]
  39. Morimoto-Kamata R. Yui S. Insulin‐like growth factor‐1 signaling is responsible for cathepsin G‐induced aggregation of breast cancer MCF‐7 cells. Cancer Sci. 2017 108 8 1574 1583 10.1111/cas.13286 28544544
    [Google Scholar]
  40. Wada Y. Yoshida K. Tsutani Y. Shigematsu H. Oeda M. Sanada Y. Suzuki T. Mizuiri H. Hamai Y. Tanabe K. Ukon K. Hihara J. Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol. Rep. 2007 17 1 161 167 17143494
    [Google Scholar]
  41. Bekes E.M. Schweighofer B. Kupriyanova T.A. Zajac E. Ardi V.C. Quigley J.P. Deryugina E.I. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am. J. Pathol. 2011 179 3 1455 1470 10.1016/j.ajpath.2011.05.031 21741942
    [Google Scholar]
  42. Cui C. Chakraborty K. Tang X.A. Zhou G. Schoenfelt K.Q. Becker K.M. Hoffman A. Chang Y.F. Blank A. Reardon C.A. Kenny H.A. Vaisar T. Lengyel E. Greene G. Becker L. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 2021 184 12 3163 3177.e21 10.1016/j.cell.2021.04.016 33964209
    [Google Scholar]
  43. Huang H. Zhang H. Onuma A.E. Tsung A. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1263 13 23 10.1007/978‑3‑030‑44518‑8_2 32588320
    [Google Scholar]
  44. Yui S. Osawa Y. Ichisugi T. Morimoto-Kamata R. Neutrophil cathepsin G, but not elastase, induces aggregation of MCF-7 mammary carcinoma cells by a protease activity-dependent cell-oriented mechanism. Mediators Inflamm. 2014 2014 1 12 10.1155/2014/971409 24803743
    [Google Scholar]
  45. Yui S. Tomita K. Kudo T. Ando S. Yamazaki M. Induction of multicellular 3‐D spheroids of MCF‐7 breast carcinoma cells by neutrophil‐derived cathepsin G and elastase. Cancer Sci. 2005 96 9 560 570 10.1111/j.1349‑7006.2005.00097.x 16128741
    [Google Scholar]
  46. Wilson T.J. Nannuru K.C. Futakuchi M. Sadanandam A. Singh R.K. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res. 2008 68 14 5803 5811 10.1158/0008‑5472.CAN‑07‑5889 18632634
    [Google Scholar]
  47. Li H. Qiu Z. Li F. Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 2017 14 5 5865 5870 10.3892/ol.2017.6924 29113219
    [Google Scholar]
  48. Yousef E.M. Tahir M.R. St-Pierre Y. Gaboury L.A. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 2014 14 1 609 10.1186/1471‑2407‑14‑609 25151367
    [Google Scholar]
  49. Ghajar C.M. Peinado H. Mori H. Matei I.R. Evason K.J. Brazier H. Almeida D. Koller A. Hajjar K.A. Stainier D.Y.R. Chen E.I. Lyden D. Bissell M.J. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 2013 15 7 807 817 10.1038/ncb2767 23728425
    [Google Scholar]
  50. Albrengues J. Shields M.A. Ng D. Park C.G. Ambrico A. Poindexter M.E. Upadhyay P. Uyeminami D.L. Pommier A. Küttner V. Bružas E. Maiorino L. Bautista C. Carmona E.M. Gimotty P.A. Fearon D.T. Chang K. Lyons S.K. Pinkerton K.E. Trotman L.C. Goldberg M.S. Yeh J.T.H. Egeblad M. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018 361 6409 eaao4227 10.1126/science.aao4227 30262472
    [Google Scholar]
  51. El Rayes T. Catena R. Lee S. Stawowczyk M. Joshi N. Fischbach C. Powell C.A. Dannenberg A.J. Altorki N.K. Gao D. Mittal V. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl. Acad. Sci. USA 2015 112 52 16000 16005 10.1073/pnas.1507294112 26668367
    [Google Scholar]
  52. Aguirre Ghiso J.A. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 2002 21 16 2513 2524 10.1038/sj.onc.1205342 11971186
    [Google Scholar]
  53. Tay R.E. Richardson E.K. Toh H.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 2021 28 1-2 5 17 10.1038/s41417‑020‑0183‑x 32457487
    [Google Scholar]
  54. Ma Y. Wei J. He W. Ren J. Neutrophil extracellular traps in cancer. Med. Comm. 2024 5 8 e647 10.1002/mco2.647 39015554
    [Google Scholar]
  55. Wu G. Pan B. Shi H. Yi Y. Zheng X. Ma H. Zhao M. Zhang Z. Cheng L. Huang Y. Guo W. Neutrophils’ dual role in cancer: From tumor progression to immunotherapeutic potential. Int. Immunopharmacol. 2024 140 112788 10.1016/j.intimp.2024.112788 39083923
    [Google Scholar]
  56. Zheng Z. Li Y. Jia S. Zhu M. Cao L. Tao M. Jiang J. Zhan S. Chen Y. Gao P.J. Hu W. Wang Y. Shao C. Shi Y. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3. Nat. Commun. 2021 12 1 6202 10.1038/s41467‑021‑26460‑z 34707103
    [Google Scholar]
  57. Rayes R.F. Mouhanna J.G. Nicolau I. Bourdeau F. Giannias B. Rousseau S. Quail D. Walsh L. Sangwan V. Bertos N. Cools-Lartigue J. Ferri L.E. Spicer J.D. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight 2019 4 16 e128008 10.1172/jci.insight.128008 31343990
    [Google Scholar]
  58. Pang Y. Gara S.K. Achyut B.R. Li Z. Yan H.H. Day C.P. Weiss J.M. Trinchieri G. Morris J.C. Yang L. TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 2013 3 8 936 951 10.1158/2159‑8290.CD‑12‑0527 23661553
    [Google Scholar]
  59. Coffelt S.B. Wellenstein M.D. de Visser K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016 16 7 431 446 10.1038/nrc.2016.52 27282249
    [Google Scholar]
  60. Manfioletti G. Fedele M. Epithelial–mesenchymal transition (EMT). Int. J. Mol. Sci. 2023 24 14 11386 10.3390/ijms241411386 37511145
    [Google Scholar]
  61. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  62. Martins-Cardoso K. Almeida V.H. Bagri K.M. Rossi M.I.D. Mermelstein C.S. König S. Monteiro R.Q. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial–mesenchymal transition. Cancers (Basel) 2020 12 6 1542 10.3390/cancers12061542 32545405
    [Google Scholar]
  63. Martins-Cardoso K. Maçao A. Souza J.L. Silva A.G. König S. Martins-Gonçalves R. Hottz E.D. Rondon A.M.R. Versteeg H.H. Bozza P.T. Almeida V.H. Monteiro R.Q. TF/PAR2 signaling axis supports the protumor effect of neutrophil extracellular traps (NETs) on human breast cancer cells. Cancers (Basel) 2023 16 1 5 10.3390/cancers16010005 38201433
    [Google Scholar]
  64. Wu J. Dong W. Pan Y. Wang J. Wu M. Yu Y. Crosstalk between gut microbiota and metastasis in colorectal cancer: Implication of neutrophil extracellular traps. Front. Immunol. 2023 14 1296783 10.3389/fimmu.2023.1296783 37936694
    [Google Scholar]
  65. Guan X. Lu Y. Zhu H. Yu S. Zhao W. Chi X. Xie C. Yin Z. The crosstalk between cancer cells and neutrophils enhances hepatocellular carcinoma metastasis via neutrophil extracellular traps-associated cathepsin G component: A potential therapeutic target. J. Hepatocell. Carcinoma 2021 8 451 465 10.2147/JHC.S303588 34046369
    [Google Scholar]
  66. Zeng Z. Xu S. Wang F. Peng X. Zhang W. Zhan Y. Ding Y. Liu Z. Liang L. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps. Oncogene 2022 41 29 3719 3731 10.1038/s41388‑022‑02248‑3 35739335
    [Google Scholar]
  67. Wculek S.K. Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 2015 528 7582 413 417 10.1038/nature16140 26649828
    [Google Scholar]
  68. Feng Y. Luo S. Fan D. Guo X. Ma S. The role of vascular endothelial cells in tumor metastasis. Acta Histochem. 2023 125 6 152070 10.1016/j.acthis.2023.152070 37348328
    [Google Scholar]
  69. McDowell S.A.C. Luo R.B.E. Arabzadeh A. Doré S. Bennett N.C. Breton V. Karimi E. Rezanejad M. Yang R.R. Lach K.D. Issac M.S.M. Samborska B. Perus L.J.M. Moldoveanu D. Wei Y. Fiset B. Rayes R.F. Watson I.R. Kazak L. Guiot M.C. Fiset P.O. Spicer J.D. Dannenberg A.J. Walsh L.A. Quail D.F. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2021 2 5 545 562 10.1038/s43018‑021‑00194‑9 35122017
    [Google Scholar]
  70. Tesfamariam B. Involvement of platelets in tumor cell metastasis. Pharmacol. Ther. 2016 157 112 119 10.1016/j.pharmthera.2015.11.005 26615781
    [Google Scholar]
  71. Coupland L.A. Parish C.R. Platelets, selectins, and the control of tumor metastasis. Semin. Oncol. 2014 41 3 422 434 10.1053/j.seminoncol.2014.04.003 25023359
    [Google Scholar]
  72. Li J.C. Zou X.M. Yang S.F. Jin J.Q. Zhu L. Li C.J. Yang H. Zhang A.G. Zhao T.Q. Chen C.Y. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J. Gastroenterol. 2022 28 26 3132 3149 10.3748/wjg.v28.i26.3132 36051331
    [Google Scholar]
  73. Fuchs T.A. Brill A. Duerschmied D. Schatzberg D. Monestier M. Myers D.D. Jr Wrobleski S.K. Wakefield T.W. Hartwig J.H. Wagner D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010 107 36 15880 15885 10.1073/pnas.1005743107 20798043
    [Google Scholar]
  74. Massberg S. Grahl L. von Bruehl M.L. Manukyan D. Pfeiler S. Goosmann C. Brinkmann V. Lorenz M. Bidzhekov K. Khandagale A.B. Konrad I. Kennerknecht E. Reges K. Holdenrieder S. Braun S. Reinhardt C. Spannagl M. Preissner K.T. Engelmann B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010 16 8 887 896 10.1038/nm.2184 20676107
    [Google Scholar]
  75. Zhu W.F. Ji W.J. Wang Q.Y. Qu W. Feng F. Han L.F. Xue J.W. Liu F.L. Liu W.Y. Intraoperative cavity local delivery system with NETs‐specific drug release for post‐breast cancer surgery recurrence correction. Adv. Healthc. Mater. 2024 13 30 2401537 10.1002/adhm.202401537 39205549
    [Google Scholar]
  76. Miyazono K. Ten Dijke P. Heldin C.H. TGF-β signaling by Smad proteins. Adv. Immunol. 2000 75 115 157 10.1016/S0065‑2776(00)75003‑6 10879283
    [Google Scholar]
  77. Hu Y. Wang H. Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol. Rev. 2024 321 1 263 279 10.1111/imr.13277 37712361
    [Google Scholar]
  78. Zhou S.L. Zhou Z.J. Hu Z.Q. Huang X.W. Wang Z. Chen E.B. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016 150 1646 1658 10.1002/mco2.647 39015554
    [Google Scholar]
  79. Li H. Li J. Bai Z. Yan S. Li J. Collagen-induced DDR1 upregulates CXCL5 to promote neutrophil extracellular traps formation and Treg infiltration in breast cancer. Int. Immunopharmacol. 2023 120 110235 10.1016/j.intimp.2023.110235 37201403
    [Google Scholar]
  80. Zhang J. Dai Y. Wei C. Zhao X. Zhou Q. Xie L. DNase I improves corneal epithelial and nerve regeneration in diabetic mice. J. Cell. Mol. Med. 2020 24 8 4547 4556 10.1111/jcmm.15112 32168430
    [Google Scholar]
  81. Xia Y. He J. Zhang H. Wang H. Tetz G. Maguire C.A. Wang Y. Onuma A. Genkin D. Tetz V. Stepanov A. Terekhov S. Ukrainskaya V. Huang H. Tsung A. AAV‐mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol. Oncol. 2020 14 11 2920 2935 10.1002/1878‑0261.12787 32813937
    [Google Scholar]
  82. Yang C. Dong Z.Z. Zhang J. Teng D. Luo X. Li D. Zhou Y. Peptidylarginine deiminases 4 as a promising target in drug discovery. Eur. J. Med. Chem. 2021 226 113840 10.1016/j.ejmech.2021.113840 34520958
    [Google Scholar]
  83. Suzuki M. Ikari J. Anazawa R. Tanaka N. Katsumata Y. Shimada A. Suzuki E. Tatsumi K. PAD4 deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung. Am. J. Respir. Cell Mol. Biol. 2020 63 6 806 818 10.1165/rcmb.2019‑0433OC 32915635
    [Google Scholar]
  84. Okeke E.B. Louttit C. Fry C. Najafabadi A.H. Han K. Nemzek J. Moon J.J. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials 2020 238 119836 10.1016/j.biomaterials.2020.119836 32045782
    [Google Scholar]
  85. Shen X.B. Chen X. Zhang Z.Y. Wu F.F. Liu X.H. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur. J. Med. Chem. 2021 225 113818 10.1016/j.ejmech.2021.113818 34492551
    [Google Scholar]
  86. Sharma P. Garg N. Sharma A. Capalash N. Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int. J. Med. Microbiol. 2019 309 8 151354 10.1016/j.ijmm.2019.151354 31495663
    [Google Scholar]
  87. Várady C.B.S. Oliveira A.C. Monteiro R.Q. Gomes T. Recombinant human DNase I for the treatment of cancer-associated thrombosis: A pre-clinical study. Thromb. Res. 2021 203 131 137 10.1016/j.thromres.2021.04.028 34015562
    [Google Scholar]
  88. Park J. Wysocki R.W. Amoozgar Z. Maiorino L. Fein M.R. Jorns J. Schott A.F. Kinugasa-Katayama Y. Lee Y. Won N.H. Nakasone E.S. Hearn S.A. Küttner V. Qiu J. Almeida A.S. Perurena N. Kessenbrock K. Goldberg M.S. Egeblad M. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016 8 361 361ra138 10.1126/scitranslmed.aag1711 27798263
    [Google Scholar]
  89. Sadtler K. Estrellas K. Allen B.W. Wolf M.T. Fan H. Tam A.J. Patel C.H. Luber B.S. Wang H. Wagner K.R. Powell J.D. Housseau F. Pardoll D.M. Elisseeff J.H. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016 352 6283 366 370 10.1126/science.aad9272 27081073
    [Google Scholar]
  90. Chen J. Hou S. Liang Q. He W. Li R. Wang H. Zhu Y. Zhang B. Chen L. Dai X. Zhang T. Ren J. Duan H. Localized degradation of neutrophil extracellular traps by photoregulated enzyme delivery for cancer immunotherapy and metastasis suppression. ACS Nano 2022 16 2 2585 2597 10.1021/acsnano.1c09318 35080858
    [Google Scholar]
  91. Lewis H.D. Liddle J. Coote J.E. Atkinson S.J. Barker M.D. Bax B.D. Bicker K.L. Bingham R.P. Campbell M. Chen Y.H. Chung C. Craggs P.D. Davis R.P. Eberhard D. Joberty G. Lind K.E. Locke K. Maller C. Martinod K. Patten C. Polyakova O. Rise C.E. Rüdiger M. Sheppard R.J. Slade D.J. Thomas P. Thorpe J. Yao G. Drewes G. Wagner D.D. Thompson P.R. Prinjha R.K. Wilson D.M. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 2015 11 3 189 191 10.1038/nchembio.1735 25622091
    [Google Scholar]
  92. Zeng J. Xu H. Fan P. Xie J. He J. Yu J. Gu X. Zhang C. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS‐PAD4 pathway. J. Cell. Mol. Med. 2020 24 13 7590 7599 10.1111/jcmm.15394 32427405
    [Google Scholar]
  93. Guay D. Beaulieu C. David Percival M. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors. Curr. Top. Med. Chem. 2010 10 7 708 716 10.2174/156802610791113469 20337582
    [Google Scholar]
  94. Xiao Y. Cong M. Li J. He D. Wu Q. Tian P. Wang Y. Yang S. Liang C. Liang Y. Wen J. Liu Y. Luo W. Lv X. He Y. Cheng D. Zhou T. Zhao W. Zhang P. Zhang X. Xiao Y. Qian Y. Wang H. Gao Q. Yang Q. Yang Q. Hu G. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021 39 3 423 437.e7 10.1016/j.ccell.2020.12.012 33450198
    [Google Scholar]
  95. Chen Q. Zhang L. Li X. Zhuo W. Neutrophil extracellular traps in tumor metastasis: Pathological functions and clinical applications. Cancers (Basel) 2021 13 11 2832 10.3390/cancers13112832 34204148
    [Google Scholar]
  96. Li R. Liu H. Dilger J.P. Lin J. Effect of Propofol on breast Cancer cell, the immune system, and patient outcome. BMC Anesthesiol. 2018 18 1 77 10.1186/s12871‑018‑0543‑3 29945542
    [Google Scholar]
  97. Li R. Xiao C. Liu H. Huang Y. Dilger J.P. Lin J. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 2018 18 1 666 10.1186/s12885‑018‑4576‑2 29914426
    [Google Scholar]
  98. Liu H. Dilger J.P. Lin J. Lidocaine suppresses viability and migration of human breast cancer cells: TRPM7 as a target for some breast cancer cell lines. Cancers (Basel) 2021 13 2 234 10.3390/cancers13020234 33435261
    [Google Scholar]
  99. Nakazawa D. Kumar S. Desai J. Anders H.J. Neutrophil extracellular traps in tissue pathology. Histol. Histopathol. 2017 32 3 203 213 27593980
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073376243250130060239
Loading
/content/journals/cchts/10.2174/0113862073376243250130060239
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Neutrophil extracellular traps ; thrombosis ; immune ; breast cancer ; tumor metastasis ; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test