Skip to content
2000
image of PGD2/PTGDR2 Signaling Affects the Stemness of Gastric Cancer Stem Cells by Regulating Autophagy

Abstract

Background

Prostaglandin D2 (PGD2) can inhibit the development of gastric cancer (GC); however, its role in the autophagic death of GC stem cells (GCSCs) remains elusive. Therefore, this study aims to evaluate the mechanisms by which PGD2 regulates the stemness in GCSCs.

Methods

In this study, HGC27-derived GCSCs were employed to knock down PGD2 receptor 2 (PTGDR2). Subsequently, cell stemness and autophagic activity in these GCSCs were assessed sphere-forming capacity, transmission electron microscopy, and western blot analyses.

Results

The results revealed that PGD2 suppressed the stemness of GCSCs and induced GCSCs autophagy, whereas the downregulation of PTGDR2 had the opposite effect. Furthermore, PGD2 was also found to inhibit the expression of stemness-associated proteins CD44 and OCT4, which were blocked by 3-MA and enhanced by RAPA. Moreover, the shPTGDR2 + PGD2 group indicated higher stemness than the PGD2 group, with 3-MA enhancing this effect and RAPA reducing this change.

Conclusion

In summary, this study indicated that PGD2/PTGDR2 signaling affects stemness and autophagy in GCSCs. The results suggest that PGD2/PTGDR2 signaling may affect the stemness of GCSCs by regulating autophagy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073372570250123091700
2025-01-27
2025-04-13
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Li Z. Shan F. Ying X. Zhang Y. e J.Y. Wang Y. Ren H. Su X. Ji J. Assessment of laparoscopic distal gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA Surg. 2019 154 12 1093 1101 10.1001/jamasurg.2019.3473 31553463
    [Google Scholar]
  3. Luo S. Li Y. Ma R. Liu J. Xu P. Zhang H. Tang K. Ma J. Liu N. Zhang Y. Sun Y. Ji T. Liang X. Yin X. Liu Y. Tong W. Niu Y. Wang N. Wang X. Huang B. Downregulation of PCK2 remodels tricarboxylic acid cycle in tumor-repopulating cells of melanoma. Oncogene 2017 36 25 3609 3617 10.1038/onc.2016.520 28166201
    [Google Scholar]
  4. Yang Y. Meng W.J. Wang Z.Q. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front. Oncol. 2022 12 960539 10.3389/fonc.2022.960539 36185219
    [Google Scholar]
  5. Yang L. Shi P. Zhao G. Xu J. Peng W. Zhang J. Zhang G. Wang X. Dong Z. Chen F. Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020 5 1 8 10.1038/s41392‑020‑0110‑5 32296030
    [Google Scholar]
  6. Biddle A. Mackenzie I.C. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev. 2012 31 1-2 285 293 10.1007/s10555‑012‑9345‑0 22302111
    [Google Scholar]
  7. Zhang Q. Wang F. Huang Y. Gao P. Wang N. Tian H. Chen A. Li Y. Wang F. PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of gastric cancer stem cells and prevents the progression of gastric cancer. Comb. Chem. High Throughput Screen. 2024 27 6 933 946 10.2174/1386207326666230731103112 37526190
    [Google Scholar]
  8. Campbell J.P. Karolak M.R. Ma Y. Perrien D.S. Masood-Campbell S.K. Penner N.L. Munoz S.A. Zijlstra A. Yang X. Sterling J.A. Elefteriou F. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012 10 7 e1001363 10.1371/journal.pbio.1001363 22815651
    [Google Scholar]
  9. Akhavan O. Ghaderi E. Shirazian S.A. Rahighi R. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 2016 97 71 77 10.1016/j.carbon.2015.06.079
    [Google Scholar]
  10. Dayem A.A. Choi H.Y. Kim J.H. Cho S.G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers 2010 2 2 859 884 10.3390/cancers2020859 24281098
    [Google Scholar]
  11. Tian H. Ge K. Wang L. Gao P. Chen A. Wang F. Guo F. Wang F. Zhang Q. Advances in PGD2/PTGDR2 signaling pathway in tumors: A review. Biomol. Biomed. 2024 24 5 1055 1067 10.17305/bb.2024.10485 38704736
    [Google Scholar]
  12. Zhang B. Bie Q. Wu P. Zhang J. You B. Shi H. Qian H. Xu W. PGD2/PTGDR2 signaling restricts the self-renewal and tumorigenesis of gastric cancer. Stem Cells 2018 36 7 990 1003 10.1002/stem.2821 29604141
    [Google Scholar]
  13. Clarke A.J. Simon A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2019 19 3 170 183 10.1038/s41577‑018‑0095‑2 30531943
    [Google Scholar]
  14. Dikic I. Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018 19 6 349 364 10.1038/s41580‑018‑0003‑4 29618831
    [Google Scholar]
  15. Nakatogawa H. Ichimura Y. Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007 130 1 165 178 10.1016/j.cell.2007.05.021 17632063
    [Google Scholar]
  16. Padman B.S. Nguyen T.N. Lazarou M. Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Autophagy 2017 13 4 772 774 10.1080/15548627.2017.1281492 28165849
    [Google Scholar]
  17. Li X. Yang K.B. Chen W. Mai J. Wu X.Q. Sun T. Wu R.Y. Jiao L. Li D.D. Ji J. Zhang H.L. Yu Y. Chen Y.H. Feng G.K. Deng R. Li J.D. Zhu X.F. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy 2021 17 12 4323 4340 10.1080/15548627.2021.1912270 33977871
    [Google Scholar]
  18. Assali A. Akhavan O. Mottaghitalab F. Adeli M. Dinarvand R. Razzazan S. Arefian E. Soleimani M. Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int. J. Nanomedicine 2018 13 5865 5886 10.2147/IJN.S162647 30319254
    [Google Scholar]
  19. Assali A. Akhavan O. Adeli M. Razzazan S. Dinarvand R. Zanganeh S. Soleimani M. Dinarvand M. Atyabi F. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomedicine 2018 14 6 1891 1903 10.1016/j.nano.2018.05.016 29885900
    [Google Scholar]
  20. Liao A. Hu R. Zhao Q. Li J. Li Y. Yao K. Zhang R. Wang H. Yang W. Liu Z. Autophagy induced by FTY720 promotes apoptosis in U266 cells. Eur. J. Pharm. Sci. 2012 45 5 600 605 10.1016/j.ejps.2011.12.014 22281442
    [Google Scholar]
  21. Ma J. Cui Y. Cao T. Xu H. Shi Y. Xia J. Tao Y. Wang Z.P. PDS5B regulates cell proliferation and motility via upregulation of Ptch2 in pancreatic cancer cells. Cancer Lett. 2019 460 65 74 10.1016/j.canlet.2019.06.014 31233836
    [Google Scholar]
  22. Han B. Zheng R. Zeng H. Wang S. Sun K. Chen R. Li L. Wei W. He J. Cancer incidence and mortality in China, 2022. J. Natl. Cancer Cent. 2024 4 1 47 53 10.1016/j.jncc.2024.01.006 39036382
    [Google Scholar]
  23. Prasad S. Ramachandran S. Gupta N. Kaushik I. Srivastava S.K. Cancer cells stemness: A doorstep to targeted therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 4 165424 10.1016/j.bbadis.2019.02.019 30818002
    [Google Scholar]
  24. Hatfield S. Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008 331 1 57 66 10.1007/s00441‑007‑0530‑3 17987317
    [Google Scholar]
  25. DelGiorno K.E. Chung C.Y. Vavinskaya V. Maurer H.C. Novak S.W. Lytle N.K. Ma Z. Giraddi R.R. Wang D. Fang L. Naeem R.F. Andrade L.R. Ali W.H. Tseng H. Tsui C. Gubbala V.B. Ridinger-Saison M. Ohmoto M. Erikson G.A. O’Connor C. Shokhirev M.N. Hah N. Urade Y. Matsumoto I. Kaech S.M. Singh P.K. Manor U. Olive K.P. Wahl G.M. Tuft cells inhibit pancreatic tumorigenesis in mice by producing Prostaglandin D2. Gastroenterology 2020 159 5 1866 1881.e8 10.1053/j.gastro.2020.07.037 32717220
    [Google Scholar]
  26. Alves M. Do Amaral N. Marchi F. Silva F. Da Costa A. Carvalho K. Baiocchi G. Soares F. De Brot L. Rocha R. Prostaglandin D2 expression is prognostic in high‑grade serous ovarian cancer. Oncol. Rep. 2019 41 4 2254 2264 10.3892/or.2019.6984 30720106
    [Google Scholar]
  27. Wu L. Lin Q. Ma Z. Chowdhury F.A. Mazumder M.H.H. Du W. Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia 2020 34 11 3028 3041 10.1038/s41375‑020‑0843‑8 32366935
    [Google Scholar]
  28. Fu Y. Li H. Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol. 2017 39 4 10.1177/1010428317697577 28378630
    [Google Scholar]
  29. Mani S.A. Guo W. Liao M.J. Eaton E.N. Ayyanan A. Zhou A.Y. Brooks M. Reinhard F. Zhang C.C. Shipitsin M. Campbell L.L. Polyak K. Brisken C. Yang J. Weinberg R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008 133 4 704 715 10.1016/j.cell.2008.03.027 18485877
    [Google Scholar]
  30. Wang B. Chen Q. Cao Y. Ma X. Yin C. Jia Y. Zang A. Fan W. LGR5 is a gastric cancer stem cell marker associated with stemness and the EMT signature genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. PLoS One 2016 11 12 e0168904 10.1371/journal.pone.0168904 28033430
    [Google Scholar]
  31. Murata T. Aritake K. Matsumoto S. Kamauchi S. Nakagawa T. Hori M. Momotani E. Urade Y. Ozaki H. Prostagladin D 2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proc. Natl. Acad. Sci. USA 2011 108 49 19802 19807 10.1073/pnas.1110011108 22106279
    [Google Scholar]
  32. Beilankouhi E.A.V. Valilo M. Dastmalchi N. Teimourian S. Safaralizadeh R. The function of autophagy in the initiation, and development of breast cancer. Curr. Med. Chem. 2024 31 20 2974 2990 10.2174/0929867330666230503145319 37138421
    [Google Scholar]
  33. Lemos G. Fernandes C.M.A.S. Silva F.H. Calmasini F.B. The role of autophagy in prostate cancer and prostatic diseases: A new therapeutic strategy. Prostate Cancer Prostatic Dis. 2024 27 2 230 238 10.1038/s41391‑024‑00793‑4 38297152
    [Google Scholar]
  34. Phadwal K. Watson A.S. Simon A.K. Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell. Mol. Life Sci. 2013 70 1 89 103 10.1007/s00018‑012‑1032‑3 22669258
    [Google Scholar]
  35. Vessoni A.T. Muotri A.R. Okamoto O.K. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012 21 4 513 520 10.1089/scd.2011.0526 22066548
    [Google Scholar]
  36. Li L.Q. Pan D. Zhang S.W. -Y-Xie D. Zheng X.L. Chen H. Autophagy regulates chemoresistance of gastric cancer stem cells via the Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2018 22 11 3402 3407 10.26355/eurrev_201806_15162 29917191
    [Google Scholar]
  37. Fukuoka T. Yashiro M. Kinoshita H. Morisaki T. Hasegawa T. Hirakawa T. Aomatsu N. Takeda H. Maruyama T. Hirakawa K. P rostaglandin d synthase is a potential novel therapeutic agent for the treatment of gastric carcinomas expressing PPARγ. Int. J. Cancer 2015 137 5 1235 1244 10.1002/ijc.29392 25516376
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073372570250123091700
Loading
/content/journals/cchts/10.2174/0113862073372570250123091700
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: stem cells ; Gastric cancer ; autophagy ; prostaglandin D2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test