Skip to content
2000
image of To Reveal the Potential Mechanism of Quercetin against NSCLC Based on Network Pharmacology and Experimental Validation

Abstract

Purpose

This study aimed to initially clarify the potential mechanism of quercetin in the treatment of non-small cell lung cancer (NSCLC) based on network pharmacology, molecular docking and experiments.

Method

TCMSP, SwissTargetPrediction, TCMIP, STITCH, and ETCM databases were applied to obtain the targets of quercetin. NSCLC-related targets were retrieved from GeneCards, OMIM, PharmGKB, TTD, and NCBI databases. Their intersection targets were imported into the STRING database to construct a protein-protein interaction (PPI) network and core targets were identified through the Cytoscape 3.10.0 soft and the CytoHubba tool. Furthermore, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the intersection targets. A compound-targets-pathways network was subsequently constructed to screen for key targets and pathways. Molecular docking was performed with Discovery Studio software to verify the interactions between quercetin and core targets. validations were conducted employing CCK-8 assays, flow cytometry, and Western blotting (WB).

Results

193 potential targets of quercetin for treating NSCLC were obtained. The top ten core targets identified within the PPI network included TP53, HSP90AA1, AKT1, JUN, SRC, EGFR, ACTB, TNF, MAPK1, and VEGFA. GO analysis yielded 2319 items, and KEGG analysis resulted in 211 enriched pathways. Molecular docking results demonstrated a high affinity of quercetin towards the core targets. Based on the compound-targets-pathways network and molecular docking, the PI3K/AKT/P53 pathway and its key-related proteins (PIK3R1, AKT1, and TP53) were selected for further validation. Quercetin(20 and 40 μg/mL) significantly decreased the viability of A549 NSCLC cells but not BEAS-2B normal cells via CCK-8 assays. Flow cytometry and WB analyses further corroborated that quercetin could promote apoptosis of A549 cells by downregulating and upregulating the expression of Bcl-2 and Bax (<0.05), respectively. Notably, quercetin did not significantly alter the total protein levels of PI3K, AKT, and P53 but downregulated the phosphorylation levels of PI3K and AKT (<0.05) and upregulated the phosphorylation level of P53 (<0.05).

Conclusion

Quercetin exhibits therapeutic potential in NSCLC by regulating the PI3K/AKT/P53 pathway to promote cell apoptosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073332751241008072644
2024-10-21
2024-11-22
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Leiter A. Veluswamy R.R. Wisnivesky J.P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 2023 20 9 624 639 10.1038/s41571‑023‑00798‑3 37479810
    [Google Scholar]
  4. Cao W. Chen H.D. Yu Y.W. Li N. Chen W.Q. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.) 2021 134 7 783 791 10.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  5. Bajbouj K. Al-Ali A. Ramakrishnan R.K. Saber-Ayad M. Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2021 22 21 11701 10.3390/ijms222111701 34769131
    [Google Scholar]
  6. Zhou F Yuan Z Gong Y Pharmacological targeting of MTHFD2 suppresses NSCLC via the regulation of ILK signaling pathway. Biomed Pharmacother. 2023 161 114412
    [Google Scholar]
  7. Araghi M. Mannani R. Heidarnejad maleki A. Hamidi A. Rostami S. Safa S.H. Faramarzi F. Khorasani S. Alimohammadi M. Tahmasebi S. Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int. 2023 23 1 162 10.1186/s12935‑023‑02990‑y 37568193
    [Google Scholar]
  8. Alexander M. Kim S.Y. Cheng H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung 2020 198 6 897 907 10.1007/s00408‑020‑00407‑5 33175991
    [Google Scholar]
  9. Osmani L. Askin F. Gabrielson E. Li Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin. Cancer Biol. 2018 52 Pt 1 103 109 10.1016/j.semcancer.2017.11.019 29183778
    [Google Scholar]
  10. Wang M. Herbst R.S. Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021 27 8 1345 1356 10.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  11. Xie S Wu Z Qi Y The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother. 2021 138 111450
    [Google Scholar]
  12. Riely G.J. Wood D.E. Ettinger D.S. Aisner D.L. Akerley W. Bauman J.R. Bharat A. Bruno D.S. Chang J.Y. Chirieac L.R. DeCamp M. Desai A.P. Dilling T.J. Dowell J. Durm G.A. Gettinger S. Grotz T.E. Gubens M.A. Juloori A. Lackner R.P. Lanuti M. Lin J. Loo B.W. Lovly C.M. Maldonado F. Massarelli E. Morgensztern D. Mullikin T.C. Ng T. Owen D. Owen D.H. Patel S.P. Patil T. Polanco P.M. Riess J. Shapiro T.A. Singh A.P. Stevenson J. Tam A. Tanvetyanon T. Yanagawa J. Yang S.C. Yau E. Gregory K.M. Hang L. Non–Small Cell Lung Cancer, Version 4.2024. J. Natl. Compr. Canc. Netw. 2024 22 4 249 274 10.6004/jnccn.2204.0023 38754467
    [Google Scholar]
  13. Stower H. Effective treatment of NSCLC. Nat. Med. 2020 26 10 1512 33029022
    [Google Scholar]
  14. Rotow J. Bivona T.G. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer 2017 17 11 637 658 10.1038/nrc.2017.84 29068003
    [Google Scholar]
  15. Ye B. Chen P. Lin C. Zhang C. Li L. Study on the material basis and action mechanisms of sophora davidii (Franch.) skeels flower extract in the treatment of non-small cell lung cancer. J. Ethnopharmacol. 2023 317 116815 10.1016/j.jep.2023.116815 37400006
    [Google Scholar]
  16. Hosseini A. Razavi B.M. Banach M. Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother. Res. 2021 35 10 5352 5364 10.1002/ptr.7144 34101925
    [Google Scholar]
  17. Dabeek W.M. Marra M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019 11 10 2288 10.3390/nu11102288 31557798
    [Google Scholar]
  18. Ma N. Li Y.J. Fan J.P. Research progress on pharmacological action of quercetin. Journal of Liaoning University of TCM 2018 20 08 221 224
    [Google Scholar]
  19. Liu Y Tang ZG Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed Pharmacother. 2017 92 33 38
    [Google Scholar]
  20. Reyes-Farias M. Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019 20 13 3177 10.3390/ijms20133177 31261749
    [Google Scholar]
  21. Silverman E.K. Schmidt H.H.H.W. Anastasiadou E. Altucci L. Angelini M. Badimon L. Balligand J.L. Benincasa G. Capasso G. Conte F. Di Costanzo A. Farina L. Fiscon G. Gatto L. Gentili M. Loscalzo J. Marchese C. Napoli C. Paci P. Petti M. Quackenbush J. Tieri P. Viggiano D. Vilahur G. Glass K. Baumbach J. Molecular networks in Network Medicine: Development and applications. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020 12 6 e1489 10.1002/wsbm.1489 32307915
    [Google Scholar]
  22. Zhou W. Zhang H. Wang X. Kang J. Guo W. Zhou L. Liu H. Wang M. Jia R. Du X. Wang W. Zhang B. Li S. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomedicine 2022 95 153837 10.1016/j.phymed.2021.153837 34883416
    [Google Scholar]
  23. Ma H. Xu F. Liu C. Seeram N.P. A Network Pharmacology Approach to Identify Potential Molecular Targets for Cannabidiol’s Anti-Inflammatory Activity. Cannabis Cannabinoid Res. 2021 6 4 288 299 10.1089/can.2020.0025 33998855
    [Google Scholar]
  24. Lin C. Liu Z. Chen J. Wang X. Zhang R. Wu L. Li L. Integration of UPLC–QE–MS/MS and network pharmacology to investigate the active components and action mechanisms of tea cake extract for treating cough. Biomed. Chromatogr. 2022 36 10 e5442 10.1002/bmc.5442 35781817
    [Google Scholar]
  25. Doak B.C. Over B. Giordanetto F. Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 2014 21 9 1115 1142 10.1016/j.chembiol.2014.08.013 25237858
    [Google Scholar]
  26. Di Petrillo A. Orrù G. Fais A. Fantini M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022 36 1 266 278 10.1002/ptr.7309 34709675
    [Google Scholar]
  27. Alizadeh S.R. Ebrahimzadeh M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem. 2022 229 114068 10.1016/j.ejmech.2021.114068 34971873
    [Google Scholar]
  28. Haddad P. Eid H. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017 24 4 355 364 10.2174/0929867323666160909153707 27633685
    [Google Scholar]
  29. Riche K. Lenard N.R. Quercetin’s Effects on Glutamate Cytotoxicity. Molecules 2022 27 21 7620 10.3390/molecules27217620 36364448
    [Google Scholar]
  30. Kashyap D. Garg V.K. Tuli H.S. Yerer M.B. Sak K. Sharma A.K. Kumar M. Aggarwal V. Sandhu S.S. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019 9 5 174 10.3390/biom9050174 31064104
    [Google Scholar]
  31. Vinayak M. Maurya A.K. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer. Agents Med. Chem. 2019 19 13 1560 1576 10.2174/1871520619666190705150214 31284873
    [Google Scholar]
  32. Tang S.M. Deng X.T. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020 121 109604
    [Google Scholar]
  33. Youn H. Jeong J.C. Jeong Y.S. Kim E.J. Um S.J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol. Pharm. Bull. 2013 36 6 944 951 10.1248/bpb.b12‑01004 23727915
    [Google Scholar]
  34. Wong M.Y. Chiu G.N.C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine 2011 7 6 834 840 10.1016/j.nano.2011.02.001 21371568
    [Google Scholar]
  35. Chen W. Wang X. Zhuang J. Zhang L. Lin Y. Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells. Carcinogenesis 2007 28 10 2114 2121 10.1093/carcin/bgm133 17548900
    [Google Scholar]
  36. Fan S. Geng Q. Pan Z. Li X. Tie L. Pan Y. Li X. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst. Biol. 2012 6 1 152 10.1186/1752‑0509‑6‑152 23228038
    [Google Scholar]
  37. Deng Z. Chen G. Shi Y. Lin Y. Ou J. Zhu H. Wu J. Li G. Lv L. Curcumin and its nano-formulations: Defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification. Front. Pharmacol. 2022 13 920514 10.3389/fphar.2022.920514 36003508
    [Google Scholar]
  38. Alzahrani A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol. 2019 59 125 132 10.1016/j.semcancer.2019.07.009 31323288
    [Google Scholar]
  39. Pompura S.L. Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J. Leukoc. Biol. 2018 103 6 1065 1076 10.1002/JLB.2MIR0817‑349R
    [Google Scholar]
  40. Samakova A. Gazova A. Sabova N. Valaskova S. Jurikova M. Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol. Res. 2019 68 Suppl. 2 S131 S138 10.33549/physiolres.934345 31842576
    [Google Scholar]
  41. Pérez-Ramírez C. Cañadas-Garre M. Molina M.Á. Faus-Dáder M.J. Calleja-Hernández M.Á. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 2015 16 16 1843 1862 10.2217/pgs.15.122 26555006
    [Google Scholar]
  42. Liang J. Li H. Han J. Jiang J. Wang J. Li Y. Feng Z. Zhao R. Sun Z. Lv B. Tian H. Mex3a interacts with LAMA2 to promote lung adenocarcinoma metastasis via PI3K/AKT pathway. Cell Death Dis. 2020 11 8 614 10.1038/s41419‑020‑02858‑3 32792503
    [Google Scholar]
  43. Shi L. Zhu W. Huang Y. Zhuo L. Wang S. Chen S. Zhang B. Ke B. Cancer‐associated fibroblast‐derived exosomal microRNA‐20a suppresses the PTEN/PI3K‐AKT pathway to promote the progression and chemoresistance of non‐small cell lung cancer. Clin. Transl. Med. 2022 12 7 e989 10.1002/ctm2.989 35857905
    [Google Scholar]
  44. Wei C. Dong X. Lu H. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J. Exp. Clin. Cancer Res. 2019 38 1 95
    [Google Scholar]
  45. Liu Y. Wang D. Li Z. Li X. Jin M. Jia N. Cui X. Hu G. Tang T. Yu Q. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors. Sci. Rep. 2022 12 1 5924 10.1038/s41598‑022‑09889‑0 35395865
    [Google Scholar]
  46. Huang-Doran I. Tomlinson P. Payne F. Gast A. Sleigh A. Bottomley W. Harris J. Daly A. Rocha N. Rudge S. Clark J. Kwok A. Romeo S. McCann E. Müksch B. Dattani M. Zucchini S. Wakelam M. Foukas L.C. Savage D.B. Murphy R. O’Rahilly S. Barroso I. Semple R.K. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 2016 1 17 e88766 10.1172/jci.insight.88766 27766312
    [Google Scholar]
  47. Costa C. Engelman J.A. The double life of p85. Cancer Cell 2014 26 4 445 447 10.1016/j.ccell.2014.09.011 25314071
    [Google Scholar]
  48. Herrero-Gonzalez S. Di Cristofano A. New routes to old places: PIK3R1 and PIK3R2 join PIK3CA and PTEN as endometrial cancer genes. Cancer Discov. 2011 1 2 106 107 10.1158/2159‑8290.CD‑11‑0116 22586352
    [Google Scholar]
  49. Vara J.Á.F. Casado E. de Castro J. Cejas P. Belda-Iniesta C. González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004 30 2 193 204 10.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  50. Hinz N. Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun. Signal. 2019 17 1 154 10.1186/s12964‑019‑0450‑3 31752925
    [Google Scholar]
  51. George B. Gui B. Raguraman R. Paul A.M. Nakshatri H. Pillai M.R. Kumar R. AKT1 Transcriptomic Landscape in Breast Cancer Cells. Cells 2022 11 15 2290 10.3390/cells11152290 35892586
    [Google Scholar]
  52. Alwhaibi A. Verma A. Adil M.S. Somanath P.R. The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis. Pharmacol. Res. 2019 145 104270 10.1016/j.phrs.2019.104270 31078742
    [Google Scholar]
  53. Chen X. Ariss M.M. Ramakrishnan G. Nogueira V. Blaha C. Putzbach W. Islam A.B.M.M.K. Frolov M.V. Hay N. Cell-Autonomous versus Systemic Akt Isoform Deletions Uncovered New Roles for Akt1 and Akt2 in Breast Cancer. Mol. Cell 2020 80 1 87 101.e5 10.1016/j.molcel.2020.08.017 32931746
    [Google Scholar]
  54. Voskarides K. Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells 2023 12 3 512 10.3390/cells12030512 36766853
    [Google Scholar]
  55. Kaur R.P. Vasudeva K. Kumar R. Munshi A. Role of p53 Gene in Breast Cancer: Focus on Mutation Spectrum and Therapeutic Strategies. Curr. Pharm. Des. 2018 24 30 3566 3575 10.2174/1381612824666180926095709 30255744
    [Google Scholar]
  56. Monti P. Menichini P. Speciale A. Cutrona G. Fais F. Taiana E. Neri A. Bomben R. Gentile M. Gattei V. Ferrarini M. Morabito F. Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front. Oncol. 2020 10 593383 10.3389/fonc.2020.593383 33194757
    [Google Scholar]
  57. Olivier M. Hollstein M. Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010 2 1 a001008 10.1101/cshperspect.a001008 20182602
    [Google Scholar]
  58. Leroy B. Anderson M. Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 2014 35 6 672 688 10.1002/humu.22552 24665023
    [Google Scholar]
  59. Chen N.Y. Lu K. Yuan J.M. Li X.J. Gu Z.Y. Pan C.X. Mo D.L. Su G.F. 3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis. Bioorg. Chem. 2021 114 105101 10.1016/j.bioorg.2021.105101 34175723
    [Google Scholar]
  60. Chai X. Zhang J.W. Li S.H. Cheng Q.S. Qin M.M. Yang C.Y. Gao J.L. Huang H.B. Xanthoceraside induces cell apoptosis through downregulation of the PI3K/Akt/Bcl-2/Bax signaling pathway in cell lines of human bladder cancer. Indian J. Pathol. Microbiol. 2021 64 2 294 301 10.4103/IJPM.IJPM_462_19 33851623
    [Google Scholar]
  61. Lee K.B. Byun H.J. Park S.H. Park C.Y. Lee S.H. Rho S.B. CYR61 controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett. 2012 315 1 86 95 10.1016/j.canlet.2011.10.016 22078465
    [Google Scholar]
  62. Chen L. Qing J. Xiao Y. Huang X. Chi Y. Chen Z. TIM-1 promotes proliferation and metastasis, and inhibits apoptosis, in cervical cancer through the PI3K/AKT/p53 pathway. BMC Cancer 2022 22 1 370 10.1186/s12885‑022‑09386‑7 35392845
    [Google Scholar]
  63. Knudson C.M. Korsmeyer S.J. Bcl-2 and Bax function independently to regulate cell death. Nat. Genet. 1997 16 4 358 363 10.1038/ng0897‑358 9241272
    [Google Scholar]
  64. Boise L.H. Gottschalk A.R. Quintáns J. Thompson C.B. Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr. Top. Microbiol. Immunol. 1995 200 107 121 10.1007/978‑3‑642‑79437‑7_8 7634826
    [Google Scholar]
  65. Correia C. Lee S.H. Meng X.W. Vincelette N.D. Knorr K.L.B. Ding H. Nowakowski G.S. Dai H. Kaufmann S.H. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim. Biophys. Acta Mol. Cell Res. 2015 1853 7 1658 1671 10.1016/j.bbamcr.2015.03.012 25827952
    [Google Scholar]
  66. Taha M.O. Habash M. Khanfar M.A. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. J. Comput. Aided Mol. Des. 2014 28 5 509 547 10.1007/s10822‑014‑9740‑4 24610240
    [Google Scholar]
  67. Ge Z. Xu M. Ge Y. Huang G. Chen D. Ye X. Xiao Y. Zhu H. Yin R. Shen H. Ma G. Qi L. Wei G. Li D. Wei S. Zhu M. Ma H. Shi Z. Wang X. Ge X. Qian X. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Rep. 2023 42 11 113417 10.1016/j.celrep.2023.113417 37950872
    [Google Scholar]
  68. Alizadeh S.R. Ebrahimzadeh M.A. O‐Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytother. Res. 2022 36 2 778 807 10.1002/ptr.7352 34964515
    [Google Scholar]
  69. Ulusoy H.G. Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020 60 19 3290 3303 10.1080/10408398.2019.1683810 31680558
    [Google Scholar]
  70. Mirza M.A. Mahmood S. Hilles A.R. Ali A. Khan M.Z. Zaidi S.A.A. Iqbal Z. Ge Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications—A Review. Pharmaceuticals (Basel) 2023 16 11 1631 10.3390/ph16111631 38004496
    [Google Scholar]
  71. Kaur S. Goyal A. Rai A. Quercetin nanoformulations: Recent advancements and therapeutic applications. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2023 14 3
    [Google Scholar]
  72. Alavi M. Adulrahman N.A. Haleem A.A. Al-Râwanduzi A.D.H. Khusro A. Abdelgawad M.A. Ghoneim M.M. Batiha G.E.S. Kahrizi D. Martinez F. Koirala N. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell. Mol. Biol. 2022 67 5 151 156 10.14715/cmb/2021.67.5.21 35818258
    [Google Scholar]
  73. Gorantla S. Wadhwa G. Jain S. Sankar S. Nuwal K. Mahmood A. Dubey S.K. Taliyan R. Kesharwani P. Singhvi G. Recent advances in nanocarriers for nutrient delivery. Drug Deliv. Transl. Res. 2022 12 10 2359 2384 10.1007/s13346‑021‑01097‑z 34845678
    [Google Scholar]
  74. Okamoto T. Safety of quercetin for clinical application (Review). Int. J. Mol. Med. 2005 16 2 275 278 10.3892/ijmm.16.2.275 16012761
    [Google Scholar]
  75. Kundrapu D.B. Malla R.R. Advances in Quercetin for Drug-Resistant Cancer Therapy: Mechanisms, Applications, and Delivery Systems. Crit. Rev. Oncog. 2023 28 4 15 26 10.1615/CritRevOncog.2023049513 38050978
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073332751241008072644
Loading
/content/journals/cchts/10.2174/0113862073332751241008072644
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: molecular docking ; network pharmacology ; PI3K/AKT/P53 signaling pathway ; Quercetin ; NSCLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test