Skip to content
2000
image of Therapeutic Mechanism of Zhishi Decoction Regulating P38/MAPK Signaling Pathway on Functional Constipation (FC)

Abstract

Background

Zhishi decoction (ZSD) is one of the most common herb decoctions in traditional Chinese medicine (TCM), and it is used for the treatment of FC. However, its main therapeutic mechanism is not yet clear. This study aims to explore the possible pharmacodynamic material basis and potential molecular mechanism from network pharmacology and molecular docking and verify them through animal experiments.

Methods

Firstly, the effective ingredients, potential targets, and key targets of ZSD in the treatment of FC were screened through network pharmacology. Go and KEGG analyses were performed for potential targets. Secondly, molecular docking was used to link the main active components of ZSD with target genes to predict their possible molecular mechanisms. Finally, 30 male BALB/c mice (20±2g) were randomly divided into five groups (n=6), including the blank group, ZSD groups with two dosages (7.15, 14.3g/kg), FC model group, and positive group (lactulose group). All the mice were given difenoxate tablets for 14 days to establish FC model except the blank group. Moreover, the mice in the blank group were given the same volume of normal saline. After admination for 14 days, the whole colon tissues were obtained for the analysis of small intestinal propulsion rate, and the expression of P38MAPK in colon tissues of mice was observed via immunohistochemistry and WesterBlot.

Results

In this study, 43 active ingredients in ZSD were identified. Four hundred and thirty potential therapeutic targets were selected, among which AKT1, MAPK12, and MAPK14 were key targets. 164 GO biological processes and 123 KEGG signaling pathways were identified after analysis, such as MAPK signaling pathway, TNF signaling pathway etc. The molecular docking results showed that Prangenin, 4-Hydroxyhomopterocarpin, isoponcimarin, and AKT1, MAPK12, MAPK14 had good binding degree. Additionally, ZSD could relieve the symptoms of FC in mice significantly. Compared with the model group, p38/MAPK positive expression cells and protein expression levels in the colon tissues of ZSD groups significantly increased in a dose-dependent manner (0.01).

Conclusion

This study confirmed that ZSD could act on AKT1, MAPK12, and MAPK14 targets to activate the p38/MAPK signaling pathway to relieve FC induced by defenoxate tablets. The further development of ZSD provided a theoretical basis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073332162241126105559
2025-02-04
2025-03-28
Loading full text...

Full text loading...

References

  1. Aziz I. Whitehead W.E. Palsson O.S. Törnblom H. Simrén M. An approach to the diagnosis and management of rome iv functional disorders of chronic constipation. Expert Rev. Gastroenterol. Hepatol. 2020 14 1 39 46 10.1080/17474124.2020.1708718 31893959
    [Google Scholar]
  2. Hyland N.P. Cryan J.F. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev. Biol. 2016 417 2 182 187 10.1016/j.ydbio.2016.06.027 27343895
    [Google Scholar]
  3. Yoo B.B. Mazmanian S.K. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity 2017 46 6 910 926 10.1016/j.immuni.2017.05.011 28636959
    [Google Scholar]
  4. Bharucha A.E. Lacy B.E. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 2020 158 5 1232 1249.e3 10.1053/j.gastro.2019.12.034 31945360
    [Google Scholar]
  5. Chinese expert consensus on chronic constipation (2019, Guangzhou). Chin J of Digestion 2019 39 9 577 577
    [Google Scholar]
  6. D.A Drossman. Rome IV: Functional gastrointestinal disorders. Science Press Beijing 2016
    [Google Scholar]
  7. Bai J. Cai Y. Huang Z. Gu Y. Huang N. Sun R. Zhang G. Liu R. Shouhui Tongbian capsule ameliorates constipation via gut microbiota-5-HT-intestinal motility axis. Biomed. Pharmacother. 2022 154 113627 10.1016/j.biopha.2022.113627 36058152
    [Google Scholar]
  8. Rao S.S.C. Yu S. Fedewa A. Systematic review: Dietary fibre and FODMAP ‐restricted diet in the management of constipation and irritable bowel syndrome. Aliment. Pharmacol. Ther. 2015 41 12 1256 1270 10.1111/apt.13167 25903636
    [Google Scholar]
  9. Wang L Sui N. The effect of Zhu Yang Tong Bian Gao on the VIP CAMP-PKA-AQP3 pathway in colon tissue of constipation model mice based on the theory of large intestine controlling fluid flow. Chin. J. Tradit. Chin. Med. 2022 40 5 147 151
    [Google Scholar]
  10. Scott S.M. Simrén M. Farmer A.D. Dinning P.G. Carrington E.V. Benninga M.A. Burgell R.E. Dimidi E. Fikree A. Ford A.C. Fox M. Hoad C.L. Knowles C.H. Krogh K. Nugent K. Remes-Troche J.M. Whelan K. Corsetti M. Chronic constipation in adults: Contemporary perspectives and clinical challenges. 1: Epidemiology, diagnosis, clinical associations, pathophysiology and investigation. Neurogastroenterol. Motil. 2021 33 6 e14050 10.1111/nmo.14050 33263938
    [Google Scholar]
  11. Wang L. Wu F. Hong Y. Shen L. Zhao L. Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. J. Ethnopharmacol. 2022 290 115075 10.1016/j.jep.2022.115075 35134487
    [Google Scholar]
  12. Zhao J. Shengji Zonglu. People's Medical Publishing House 2013
    [Google Scholar]
  13. Kang J Sui N Research on the mechanism of regulating qi effect of Zhishi in the treatment of functional constipation based on network pharmacology and molecular docking technology. J Practical TCM Internal Medicine 2024 1 13
    [Google Scholar]
  14. Liu J Optimization of quality control method of bitter orange decoction pieces. Xibei Yaoxue Zazhi 2021 36 06 876 881 [J].
    [Google Scholar]
  15. Wang WG Effect of Rhizoma atractylodes Rhizoma on c-kit mRNA expression in rats with slow transit constipation. World J. Integr. Tradit. Chin. West. Med 2016 11 08 1098 1102 [J].
    [Google Scholar]
  16. Wang J Research progress on pharmacological effects of atractylodes rhizoma in the treatment of gastrointestinal diseases. Chin J Traditional Chinese Medicine 2018 36 12 2854 2858 [J].
    [Google Scholar]
  17. Fang Y.S. Shan D.M. Liu J.W. Xu W. Li C.L. Wu H.Z. Ji G. Effect of constituents from fructus aurantii immaturus and radix paeoniae alba on gastrointestinal movement. Planta Med. 2009 75 1 24 31 10.1055/s‑0028‑1088342 19016407
    [Google Scholar]
  18. Liu X.Y. Fan M.L. Wang H.Y. Yu B. Liu J.H. Metabolic profile and underlying improved bio-activity of Fructus aurantii immaturus by human intestinal bacteria. Food Funct. 2017 8 6 2193 2201 10.1039/C6FO01851C 28504280
    [Google Scholar]
  19. Wu X.Y. Study on chemical composition and intestinal flora differences of different processed products of Atractylodes Rhizoma Jiangxi University of Traditional Chinese Medicine 2023
    [Google Scholar]
  20. Ma T. Tang B. Wang Y. Shen M. Ping Y. Wang L. Su J. Cinnamon oil solid self-microemulsion mediates chronic mild stress-induced depression in mice by modulating monoamine neurotransmitters, corticosterone, inflammation cytokines, and intestinal flora. Heliyon 2023 9 6 e17125 10.1016/j.heliyon.2023.e17125 37416658
    [Google Scholar]
  21. Niu M Zhang S Q Zhang B Interpretation of the guidelines for network pharmacological evaluation methods. CHM 201 52 14 4119 4129
    [Google Scholar]
  22. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  23. Lv X. Xu Z. Xu G. Li H. Wang C. Chen J. Sun J. Investigation of the active components and mechanisms of Schisandra chinensis in the treatment of asthma based on a network pharmacology approach and experimental validation. Food Funct. 2020 11 4 3032 3042 10.1039/D0FO00087F 32186565
    [Google Scholar]
  24. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  25. Kim S. Getting the most out of PubChem for virtual screening. Expert Opin. Drug Discov. 2016 11 9 843 855 10.1080/17460441.2016.1216967 27454129
    [Google Scholar]
  26. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  27. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  28. Safran M. Dalah I. Alexander J. Rosen N. Iny Stein T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Sirota-Madi A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010 2010 0 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  29. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  30. Whirl-Carrillo M. Huddart R. Gong L. Sangkuhl K. Thorn C.F. Whaley R. Klein T.E. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2021 110 3 563 572 10.1002/cpt.2350 34216021
    [Google Scholar]
  31. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  32. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  33. UniProt Consortium UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019 47 D1 D506 D515 10.1093/nar/gky1049 30395287
    [Google Scholar]
  34. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  35. Huang DW Sherman BT Tan Q Kir J Liu D Bryant D Guo Y Stephens R Baseler MW Lane HC Lempicki RA DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007 35 Web Server issue W169 W175 10.1093/nar/gkm415
    [Google Scholar]
  36. Wang L.A.N. Cheng P.E.N.G. Research progress of constipation animal model. J. Guangzhou Univ. Tradit. Chin. Med 2007 02 174 176 [J].
    [Google Scholar]
  37. Xu S. Bian R. Xiu C. Methodology of pharmacological experiment. People's Medical Publishing House 2002
    [Google Scholar]
  38. Qi C. Experimental Methods of Traditional Chinese medicine Pharmacology. People's Medical Press 1994
    [Google Scholar]
  39. Shatri H. Faisal E. Abdullah M. Syam A.F. Utari A.P. Muzellina V.N. Nursyirwan S.A. Lamuri A. Depression symptoms and inflammation in chronic functional constipation patients. Acta Med. Indones. 2023 55 1 33 39 36999263
    [Google Scholar]
  40. Xiang Y. Zeng B.F. Research progress of functional constipation in traditional Chinese medicine. J Pract Tradit Chin Med 2020 36 129 132
    [Google Scholar]
  41. Ji L. Fan Y. Li L. Bai H. Weng L. Zhao P. Efficacy and safety of Chinese herbal compound in the treatment of functional constipation. Medicine 2020 99 39 e22456 10.1097/MD.0000000000022456 32991483
    [Google Scholar]
  42. Gao A.X. Xia T.C.X. Peng Z.T. Wu Q.Y. Zhu Y. Dong T.T.X. Tsim K.W.K. The ethanolic extract of peanut shell attenuates the depressive-like behaviors of mice through modulation of inflammation and gut microbiota. Food Res. Int. 2023 168 112765 10.1016/j.foodres.2023.112765 37120215
    [Google Scholar]
  43. Wang Y. Jiang H. Wang L. Gan H. Xiao X. Huang L. Li W. Li Z. Luteolin ameliorates loperamide-induced functional constipation in mice. Braz. J. Med. Biol. Res. 2023 56 e12466 10.1590/1414‑431x2023e12466 36722660
    [Google Scholar]
  44. Yuan J. Che S. Zhang L. Ruan Z. Reparative effects of ethanol-induced intestinal barrier injury by flavonoid luteolin via MAPK/NF-κB/MLCK and Nrf2 signaling pathways. J. Agric. Food Chem. 2021 69 14 4101 4110 10.1021/acs.jafc.1c00199 33749262
    [Google Scholar]
  45. Wen Y. Zhan Y. Chen T. Li J. Long Q. Zheng F. Tang S. Tang X. Total flavonoids of aurantii fructus immaturus regulate miR-5100 to improve constipation by targeting Fzd2 to alleviate calcium balance and autophagy in interstitial cells of Cajal. Mol. Neurobiol. 2024 61 8 5882 5900 10.1007/s12035‑024‑03958‑3 38244148
    [Google Scholar]
  46. Yang Z.H. Yu H.J. Pan A. Du J.Y. Ruan Y.C. Ko W.H. Chan H.C. Zhou W.L. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model. PLoS One 2008 3 10 e3348 10.1371/journal.pone.0003348 18833323
    [Google Scholar]
  47. Yang Z. Pan A. Zuo W. Guo J. Zhou W. Relaxant effect of flavonoid naringenin on contractile activity of rat colonic smooth muscle. J. Ethnopharmacol. 2014 155 2 1177 1183 10.1016/j.jep.2014.06.053 24997391
    [Google Scholar]
  48. Rawat A. Bhatt D. Kholiya S. Chauhan A. Bawankule D.U. Chanotiya C.S. Padalia R.C. Comparative chemical composition and acetylcholinesterase (AChE) inhibitory potential of cinnamomum camphora and Cinnamomum tamala. Chem. Biodivers. 2023 20 8 e202300666 10.1002/cbdv.202300666 37533252
    [Google Scholar]
  49. Saegusa Y. Takeda H. Muto S. Oridate N. Nakagawa K. Sadakane C. Nahata M. Harada Y. Iizuka M. Hattori T. Asaka M. Decreased motility of the lower esophageal sphincter in a rat model of gastroesophageal reflux disease may be mediated by reductions of serotonin and acetylcholine signaling. Biol. Pharm. Bull. 2011 34 5 704 711 10.1248/bpb.34.704 21532161
    [Google Scholar]
  50. Cohen M.M. Jr The AKT genes and their roles in various disorders. Am. J. Med. Genet. A. 2013 161 12 2931 2937 10.1002/ajmg.a.36101 24039187
    [Google Scholar]
  51. Yao L. Fang J. Zhao J. Yu J. Zhang X. Chen W. Han L. Peng D. Chen Y. Dendrobium huoshanense in the treatment of ulcerative colitis: Network pharmacology and experimental validation. J. Ethnopharmacol. 2024 323 117729 10.1016/j.jep.2024.117729 38190953
    [Google Scholar]
  52. Bulavin D.V. Higashimoto Y. Popoff I.J. Gaarde W.A. Basrur V. Potapova O. Appella E. Fornace A.J. Jr Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001 411 6833 102 107 10.1038/35075107 11333986
    [Google Scholar]
  53. Reyskens K.M.S.E. Arthur J.S.C. Emerging roles of the mitogen and stress activated kinases MSK1 and MSK2. Front. Cell Dev. Biol. 2016 4 56 10.3389/fcell.2016.00056 27376065
    [Google Scholar]
  54. Phan T. Zhang X.H. Rosen S. Melstrom L.G. P38 kinase in gastrointestinal cancers. Cancer Gene Ther. 2023 30 9 1181 1189 10.1038/s41417‑023‑00622‑1 37248432
    [Google Scholar]
  55. Wu Y. Fang Y. Li Y. Au R. Cheng C. Li W. Xu F. Cui Y. Zhu L. Shen H. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway. J. Ethnopharmacol. 2024 319 Pt 3 117323 10.1016/j.jep.2023.117323 37852337
    [Google Scholar]
  56. Fan Y.H. Zhang G.S. Li Y.L. Effects of exogenous glial cell line-derived neurotrophic factor on the expression of Akt and MAPK in the stomach and colon of rats with slow transit constipation. Chin J Med 2011 50 4 5 [J].
    [Google Scholar]
  57. Bell C.E. Larivière N.M.K. Watson P.H. Watson A.J. Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum. Reprod. 2009 24 6 1373 1386 10.1093/humrep/dep010 19258345
    [Google Scholar]
  58. Sui N Tian Z G Liu J D The effect of MUC 2 and AQP 3 in the colon tissues of constipation model mice. China J Tradit Chin Med 2020 38 10 40 43
    [Google Scholar]
  59. Ren Y. Lv C. Zhang J. Zhang B. Yue B. Luo X. Yu Z. Wang H. Ren J. Wang Z. Dou W. Alantolactone exhibits antiproliferative and apoptosis-promoting properties in colon cancer model via activation of the MAPK-JNK/c-Jun signaling pathway. Mol. Cell. Biochem. 2021 476 12 4387 4403 10.1007/s11010‑021‑04247‑6 34460036
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073332162241126105559
Loading
/content/journals/cchts/10.2174/0113862073332162241126105559
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test