Skip to content
2000
image of Regulation of Curcumin on Follicle Initiation Rate in Diminished Ovarian Reserve

Abstract

Aim

To study the mechanism by which curcumin regulates ovarian primordial follicle initiation in rats with triptolide-induced diminished ovarian reserve (DOR).

Methods

An in vitro gelatin sponge culture was performed on 3-day-old rat ovaries. After the establishment of the DOR model with triptolide, curcumin was administered for 3 days. Histological analysis and follicle counts were performed using H&E staining. ELISA detection of ovarian hormones in the culture medium (E, FSH and LH), western blotting and Q-PCR for protein and mRNA expression (LTCONS-00011173, TGF-β1, Smad1, AMH, PTEN and GDF-9).

Results

Ovarian primordial and growing follicles increased significantly after curcumin intervention ( < 0.05), FSH/LH and E levels were increased significantly ( < 0.05). Curcumin also significantly decreased the expression of LTCONS-00011173. Meanwhile, curcumin increased the expression of TGF-β, AMH, and GDF-9 ( < 0.05). In addition, curcumin increased Smad1 gene expression and protein phosphorylation in the ovary on the one hand ( < 0.05), but inhibited Smad1 and p-Smad1 protein expression on the other hand ( < 0.05). Moreover, curcumin decreased PTEN protein and mRNA expression ( < 0.05).

Conclusion

Curcumin activates primordial follicles in DOR model rats through TGF-β1 and downstream AMH signaling pathways and may limit follicle exhaustion through LncRNA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073327087240926065629
2024-10-14
2024-11-22
Loading full text...

Full text loading...

References

  1. Volovsky M. Seifer D.B. Current status of ovarian and endometrial biomarkers in predicting ART outcomes. J. Clin. Med. 2024 13 13 3739 10.3390/jcm13133739 38999305
    [Google Scholar]
  2. Osman N.A. Morgham A.E. Update on assessment of ovar-ian reserve testing. Obstet. Gynecol. Surv. 2024 79 7 429 435 10.1097/OGX.0000000000001284 39026444
    [Google Scholar]
  3. Penzias A. Azziz R. Bendikson K. Falcone T. Hansen K. Hill M. Hurd W. Jindal S. Kalra S. Mersereau J. Ra-cowsky C. Rebar R. Reindollar R. Shannon C.N. Steiner A. Stovall D. Tanrikut C. Taylor H. Yauger B. Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2020 114 6 1151 1157 10.1016/j.fertnstert.2020.09.134 33280722
    [Google Scholar]
  4. Zhu Q. Li Y. Ma J. Ma H. Liang X. Potential factors result in diminished ovarian reserve: A comprehensive re-view. J. Ovarian Res. 2023 16 1 208 10.1186/s13048‑023‑01296‑x 37880734
    [Google Scholar]
  5. Roof K.A. Andre K.E. Modesitt S.C. Schirmer D.A. Max-imizing ovarian function and fertility following chemotherapy in premenopausal patients: Is there a role for ovarian sup-pression? Gynecol. Oncol. Rep. 2024 53 101383 10.1016/j.gore.2024.101383 38633671
    [Google Scholar]
  6. Expert consensus on clinical diagnosis and treatment of ovar-ian reserve dysfunction. J. Reprod. Med. 2022 31 425 434
    [Google Scholar]
  7. Pastore L.M. Christianson M.S. Stelling J. Kearns W.G. Segars J.H. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J. Assist. Reprod. Genet. 2018 35 1 17 23 10.1007/s10815‑017‑1058‑4 28971280
    [Google Scholar]
  8. Sun Y.C. Sun X.F. Dyce P.W. Shen W. Chen H. The role of germ cell loss during primordial follicle assembly: A review of current advances. Int. J. Biol. Sci. 2017 13 4 449 457 10.7150/ijbs.18836 28529453
    [Google Scholar]
  9. Zhu Q. Ma H. Wang J. Liang X. Understanding the mech-anisms of diminished ovarian Reserve: Insights from genetic variants and regulatory factors. Reprod. Sci. 2024 31 6 1521 1532 10.1007/s43032‑024‑01467‑1 38347379
    [Google Scholar]
  10. Peng Y. Guo R. Shi B. Li D. The role of long non-coding RNA H19 in infertility. Cell Death Discov. 2023 9 1 268 10.1038/s41420‑023‑01567‑y 37507391
    [Google Scholar]
  11. Luo J. Sun Z. MicroRNAs in POI, DOR and POR. Arch. Gynecol. Obstet. 2023 308 5 1419 1430 10.1007/s00404‑023‑06922‑z 36840768
    [Google Scholar]
  12. Neveu V. Perez-Jiménez J. Vos F. Crespy V. Du Chaf-faut L. Mennen L. Knox C. Eisner R. Cruz J. Wishart D. Scalbert A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods Database J Biol Datab Curation. 2010 2010
    [Google Scholar]
  13. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  14. Cione E. La Torre C. Cannataro R. Caroleo M.C. Plasti-na P. Gallelli L. Quercetin, epigallocatechin gallate, curcu-min, and resveratrol: From dietary sources to human mi-croRNA modulation. Molecules 2019 25 1 63 10.3390/molecules25010063 31878082
    [Google Scholar]
  15. Patel S.S. Acharya A. Ray R.S. Agrawal R. Raghuwanshi R. Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020 60 6 887 939 10.1080/10408398.2018.1552244 30632782
    [Google Scholar]
  16. Duan H. Yang S. Yang S. Zeng J. Yan Z. Zhang L. Ma X. Dong W. Zhang Y. Zhao X. Hu J. Xiao L. The mechanism of curcumin to protect mouse ovaries from oxi-dative damage by regulating AMPK/mTOR mediated autopha-gy. Phytomedicine 2024 128 155468 10.1016/j.phymed.2024.155468 38471315
    [Google Scholar]
  17. Hasanzadeh S. Read M.I. Bland A.R. Majeed M. Ja-mialahmadi T. Sahebkar A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 159 104921 10.1016/j.phrs.2020.104921 32464325
    [Google Scholar]
  18. Jakubczyk K. Drużga A. Katarzyna J. Skonieczna-Żydecka K. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Basel, Switzerland Antioxidants 2020 9
    [Google Scholar]
  19. Azami S.H. Nazarian H. Abdollahifar M.A. Eini F. Farsani M.A. Novin M.G. The antioxidant curcumin post-pones ovarian aging in young and middle-aged mice. Reprod. Fertil. Dev. 2020 32 3 292 303 10.1071/RD18472 31656219
    [Google Scholar]
  20. Chen L.P. Wu Z.T. Effect of curcumin against the trans-forming growth factor β 1-induced myocardial fibrosis and mechanism. J. Biomater. Tissue Eng. 2019 9 1435 1440
    [Google Scholar]
  21. Kunihiro A.G. Brickey J.A. Frye J.B. Luis P.B. Schnei-der C. Funk J.L. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. J. Nutr. Biochem. 2019 63 150 156 10.1016/j.jnutbio.2018.09.021 30393127
    [Google Scholar]
  22. Wang X. Zhang L. Si H. Combining luteolin and curcumin synergistically suppresses triple-negative breast cancer by regulating IFN and TGF-β signaling pathways. Biomed. Pharmaco. 2024 178 117221
    [Google Scholar]
  23. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: LncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  24. Zheng L. Luo R. Su T. Hu L. Gao F. Zhang X. Differ-entially expressed lncRNAs after the activation of primordial follicles in mouse. Reprod. Sci. 2019 26 8 1094 1104 10.1177/1933719118805869 30376771
    [Google Scholar]
  25. Wang B.S. Zhang C.L. Cui X. Li Q. Yang L. He Z.Y. Yang Z. Zeng M.M. Cao N. Curcumin inhibits the growth and invasion of gastric cancer by regulating long noncoding RNA AC022424.2. World J. Gastrointest. Oncol. 2024 16 4 1437 1452 10.4251/wjgo.v16.i4.1437 38660661
    [Google Scholar]
  26. Li Z. Gao Y. Li L. Xie S. Curcumin inhibits papillary thyroid cancer cell proliferation by regulating lncRNA LINC00691. Anal. Cell. Pathol. 2022 2022 1 10 10.1155/2022/5946670 35256924
    [Google Scholar]
  27. Li J. Chai R. Chen Y. Zhao S. Bian Y. Wang X. Cur-cumin targeting non-coding RNAs in colorectal cancer: Ther-apeutic and biomarker implications. Biomolecules 2022 12 10 1339 10.3390/biom12101339 36291546
    [Google Scholar]
  28. International S.C. Retracted: Block Copolymer Nanomicelle‐Encapsulated Curcumin Attenuates Cerebral Ischemia Injury and Affects Stem Cell Marker Expression by Inhibiting lncRNA GAS5. Stem Cells Int. 2024 2024 1 9873984 10.1155/2024/9873984 38298231
    [Google Scholar]
  29. Fu X. Zhang J. Huang X. Mo Z. Sang Z. Duan W. Huang W. Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway. Mediators Inflamm. 2021 2021 1 25 10.1155/2021/6104529 34456629
    [Google Scholar]
  30. Li S. Zhang Y. Ishfaq M. Liu R. Wei G. Zhang X. Curcumin alleviates Aflatoxin B1-triggered chicken liver necroptosis by targeting the LOC769044/miR-1679/STAT1 axis. Poult. Sci. 2024 103 8 103883 10.1016/j.psj.2024.103883 38865767
    [Google Scholar]
  31. Li W. Xia W. Zhou H. Yan L. Zeng P. Zeng Q. Thought of FU Shan’s treatment of slim infertility based on Ji Ji Gua. China J Tradit Chin Med Pharm 2020 35 3737 3739
    [Google Scholar]
  32. Li W. Deng D. Wang J. Xu J. Study on the mechanism of yangjing zhongyu decoction in regulating primordial follicle initiation in rats with DOR. China J Tradit Chin Med Pharm 2024 1 6
    [Google Scholar]
  33. Li W. Deng D. Xu J. Study on the treatment of diminished ovarian reserve with yangJing zhongYu decoction by combi-nation identification of substances with network pharmacolo-gy. Strait Pharm J 2023 35 22 26
    [Google Scholar]
  34. Dong W. Yang B. Wang L. Li B. Guo X. Zhang M. Jiang Z. Fu J. Pi J. Guan D. Zhao R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol. 2018 346 28 36 10.1016/j.taap.2018.03.020 29571711
    [Google Scholar]
  35. Liang Y. Zhu B. Li S. Zhai Y. Yang Y. Bai Z. Zeng Y. Li D. Curcumin protects bone biomechanical properties and microarchitecture in type 2 diabetic rats with osteopo-rosis via the TGFβ/Smad2/3 pathway. Exp. Ther. Med. 2020 20 3 2200 2208 10.3892/etm.2020.8943 32765696
    [Google Scholar]
  36. Kunihiro A.G. Brickey J.A. Frye J.B. Cheng J.N. Luis P.B. Schneider C. Funk J.L. Curcumin inhibition of TGFβ signaling in bone metastatic breast cancer cells and the possi-ble role of oxidative metabolites. J. Nutr. Biochem. 2022 99 108842 10.1016/j.jnutbio.2021.108842 34407450
    [Google Scholar]
  37. Kamal D.A.M. Salamt N. Yusuf A.N.M. Kashim M.I.A.M. Mokhtar M.H. Potential health benefits of curcu-min on female reproductive disorders: A review. Nutrients 2021 13 9 3126 10.3390/nu13093126 34579002
    [Google Scholar]
  38. Urošević M. Nikolić L. Gajić I. Nikolić V. Dinić A. Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022 11 2 135 10.3390/antibiotics11020135 35203738
    [Google Scholar]
  39. Liu Q. Zhang Q. Jia F. Jiang N. Wang C. Sun R. Ma Y. Construction of quaternary ammonium chitosan-coated protein nanoparticles as novel delivery system for curcumin: Characterization, stability, antioxidant activity and bio-accessibility. Food Chem. 2024 455 139923 10.1016/j.foodchem.2024.139923 38833855
    [Google Scholar]
  40. Singha A. Kalladka K. Harshitha M. Saha P. Chakraborty G. Maiti B. Satyaprasad A.U. Chakraborty A. Sil S.K. Green synthesis of chitosan gum acacia based biodegradable polymeric nanoparticles to enhance curcumin’s antioxidant property: An in vivo zebrafish (Danio rerio) study. J. Microencapsul. 2024 41 5 390 401 10.1080/02652048.2024.2362188 38945157
    [Google Scholar]
  41. Chen Q. Jiang Y. Yuan L. Liu L. Zhu X. Chen R. Wang Z. Wu K. Luo H. Ouyang Q. Preparation, charac-terization, and antioxidant properties of self-Assembled na-nomicelles of curcumin-loaded amphiphilic modified chi-tosan. Molecules 2024 29 11 2693 10.3390/molecules29112693 38893567
    [Google Scholar]
  42. Behboodi H.R. Samadi F. Riasi A. Najafi M. Ansari M. Ebadi M. A comparative study between curcumin and cur-cumin nanoparticles on reproductive performance and antiox-idant system of aged roosters. Poult. Sci. 2024 103 10 104030 10.1016/j.psj.2024.104030 39127009
    [Google Scholar]
  43. Zia A. Farkhondeh T. Pourbagher-Shahri A.M. Sa-marghandian S. The role of curcumin in aging and senes-cence: Molecular mechanisms. Biomed. Pharmacother. 2021 134 111119 10.1016/j.biopha.2020.111119 33360051
    [Google Scholar]
  44. Destici Isgoren G. Dilbaz B. Erturk Aksakal S. Kiykac Altinbas S. Yildirim Z. Simsek G. Tapisiz O.L. Impact of curcumin on ovarian reserve after tubal ligation: An experi-mental study. Reprod. Sci. 2021 28 9 2458 2467 10.1007/s43032‑021‑00468‑8 33452609
    [Google Scholar]
  45. Huang T. Chen F. Zhang Y. Chen S. Long F. Wei J. Zhang K. Zeng J. Zhu Q. Li-Ling J. Gong Y. Decreased GDF9 and BMP15 in follicle fluid and granulosa cells and outcomes of IVF-ET among young patients with low progno-sis. J. Assist. Reprod. Genet. 2023 40 3 567 576 10.1007/s10815‑023‑02723‑0 36689045
    [Google Scholar]
  46. Liu M. Zhang K. Xu T. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. Hum. Fertil. 2021 24 5 325 332 10.1080/14647273.2019.1672107 31607184
    [Google Scholar]
  47. Mehdizadeh A. Soleimani M. Amjadi F. Sene A.A. Sheikhha M.H. Dehghani A. Ashourzadeh S. Aali B.S. Dabiri S. Zandieh Z. Implication of novel BMP15 and GDF9 variants in unexpected poor ovarian response. Reprod. Sci. 2024 31 3 840 850 10.1007/s43032‑023‑01370‑1 37848645
    [Google Scholar]
  48. Fountas S. Petinaki E. Bolaris S. Kargakou M. Dafopou-los S. Zikopoulos A. Moustakli E. Sotiriou S. Dafopou-los K. The roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in folliculogenesis and in vitro fertilization. J. Clin. Med. 2024 13 13 3775 10.3390/jcm13133775 38999341
    [Google Scholar]
  49. Lv Y. Cao R.C. Liu H.B. Su X.W. Lu G. Ma J.L. Chan W.Y. Single-oocyte gene expression suggests that cur-cumin can protect the ovarian reserve by regulating the PTEN-AKT-FOXO3a pathway. Int. J. Mol. Sci. 2021 22 12 6570 10.3390/ijms22126570 34207376
    [Google Scholar]
  50. Maidarti M. Anderson R.A. Telfer E.E. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: Implications for primordial follicle activation, oocyte quality and ageing. Cells 2020 9 1 200 10.3390/cells9010200 31947601
    [Google Scholar]
  51. de Felici M. Klinger F.G. PI3K/PTEN/AKT signaling path-ways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions. Int. J. Mol. Sci. 2021 22 18 9838 10.3390/ijms22189838
    [Google Scholar]
  52. Hong W. Huang Q. Zhu F. Zheng Y. Li J. Dai J. Zhang L. PTEN regulates primordial follicular initation and growth in rats. Basic Clin Med 2019 39 1077 1084
    [Google Scholar]
  53. Jia S. Meng A. TGFβ family signaling and development. Development 2021 148 5 dev188490 10.1242/dev.188490 33712443
    [Google Scholar]
  54. Patel R.H. Truong V.B. Sabry R. Acosta J.E. McCahill K. Favetta L.A. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells. Biol. Reprod. 2023 109 6 994 1008 10.1093/biolre/ioad125 37724935
    [Google Scholar]
  55. di Clemente N. Josso N. Gouédard L. Belville C. Compo-nents of the anti-Müllerian hormone signaling pathway in gonads. Mol. Cell. Endocrinol. 2003 211 1-2 9 14 10.1016/j.mce.2003.09.005 14656470
    [Google Scholar]
  56. Calvert M.E. Kalra B. Patel A. Kumar A. Shaw N.D. Serum and urine profiles of TGF-β superfamily members in reproductive aged women. Clin Chim Acta Int J Clin Chem. 2022 524 96 100
    [Google Scholar]
  57. Rodrigues G.Q. Bertoldo M.J. Brito I.R. Silva C.M.G. Sales A.D. Castro S.V. Duffard N. Locatelli Y. Mermil-lod P. Lobo C.H. Campello C.C. Rodrigues A.P.R. Freitas V.J.F. Figueiredo J.R. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles. In Vitro Cell. Dev. Biol. Anim. 2014 50 8 688 699 10.1007/s11626‑014‑9775‑9 24879083
    [Google Scholar]
  58. Tal R. Seifer D.B. Shohat-Tal A. Grazi R.V. Malter H.E. Transforming growth factor-β1 and its receptor soluble en-doglin are altered in polycystic ovary syndrome during con-trolled ovarian stimulation. Fertil. Steril. 2013 100 2 538 543 10.1016/j.fertnstert.2013.04.022 23684116
    [Google Scholar]
  59. Richardson L. Wilcockson S.G. Guglielmi L. Hill C.S. Context-dependent TGFβ family signalling in cell fate regula-tion. Nat. Rev. Mol. Cell Biol. 2023 24 12 876 894 10.1038/s41580‑023‑00638‑3 37596501
    [Google Scholar]
  60. Zhou Y.Y. Wu Y.Q. Chong C.J. Zhong S.M. Wang Z.X. Qin X.H. Liu Z.Q. Liu J.Y. Song J.L. Irpex lacteus poly-saccharide exhibits therapeutic potential for ovarian fibrosis in PCOS rats via the TGF-β1/smad pathway. Heliyon 2023 9 8 e18741 10.1016/j.heliyon.2023.e18741 37554783
    [Google Scholar]
  61. Ao Y. Chen X. Zhou Z. Zhang Y. Hong L. Wei S. Wu Y. Tang W. The effect of SMAD1 gene on granulosa cells of qianbei ma sheep ovary and Its tissue expression analysis. Acta Veterinaria et Zootechnica Sinica 2020 51 1607 1618
    [Google Scholar]
  62. Nguyen N.M.P. Chang E.M. Chauvin M. Sicher N. Kashiwagi A. Nagykery N. Chow C. May P. Mermin-Bunnel A. Cleverdon J. Duong T. Meinsohn M-C. Gao D. Donahoe P.K. Pepin D. AMH protects the ovary from doxorubicin by regulating cell fate and the response to DNA damage. bioRxiv 2024 10.1101/2024.05.23.595356
    [Google Scholar]
  63. Hochberg A. Dahan M.H. Yarali H. Vuong L.N. Esteves S.C. Significance of serum AMH and antral follicle count dis-crepancy for the prediction of ovarian stimulation response in Poseidon criteria patients. J. Assist. Reprod. Genet. 2024 41 3 717 726 10.1007/s10815‑024‑03050‑8 38358433
    [Google Scholar]
  64. Wang W. Jia Z. Zhang N. Diagnostic value of ovarian ul-trasound index combined with AMH and LH/FSH in the suc-cess rate of IVF assisted pregnancy. Minerva Med. 2024 Online ahead of print 10.23736/S0026‑4806.24.09173‑0 38727707
    [Google Scholar]
  65. Howard J.A. Hart K.N. Thompson T.B. Molecular mecha-nisms of AMH signaling. Front. Endocrinol. (Lausanne) 2022 13 927824 10.3389/fendo.2022.927824 35813657
    [Google Scholar]
  66. Tal R. Seifer D.B. Tal R. Granger E. Wantman E. Tal O. AMH highly correlates with cumulative live birth rate in women with diminished ovarian reserve independent of age. J. Clin. Endocrinol. Metab. 2021 106 9 2754 2766 10.1210/clinem/dgab168 33729496
    [Google Scholar]
  67. Gao Y. Wang Z. Long Y. Yang L. Jiang Y. Ding D. Teng B. Chen M. Yuan J. Gao F. Unveiling the roles of sertoli cells lineage differentiation in reproductive develop-ment and disorders: A review. Front. Endocrinol. 2024 15 1357594 10.3389/fendo.2024.1357594 38699384
    [Google Scholar]
  68. Hart K.N. Stocker W.A. Nagykery N.G. Walton K.L. Harrison C.A. Donahoe P.K. Pépin D. Thompson T.B. Structure of AMH bound to AMHR2 provides insight into a unique signaling pair in the TGF-β family. Proc. Natl. Acad. Sci. USA 2021 118 26 e2104809118 10.1073/pnas.2104809118 34155118
    [Google Scholar]
  69. Gao Y. Liu C. Wu T. Liu R. Mao W. Gan X. Lu X. Liu Y. Wan L. Xu B. Chen M. Current status and per-spectives of non-coding RNA and phase separation interac-tions. Biosci. Trends 2022 16 5 330 345 10.5582/bst.2022.01304 36273890
    [Google Scholar]
  70. Chattopadhyay P. Srinivasa Vasudevan J. Pandey R. Noncoding RNAs: Modulators and modulatable players dur-ing infection-induced stress response. Brief. Funct. Genomics 2021 20 1 28 41 10.1093/bfgp/elaa026 33491070
    [Google Scholar]
  71. Shen X. Yan H. Hu M. Zhou H. Wang J. Gao R. Liu Q. Wang X. Liu Y. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in takifugu rubripes gonad. Aquat. Toxicol. 2024 273 107022 10.1016/j.aquatox.2024.107022 39032423
    [Google Scholar]
  72. Zhang T. Zhang J. Yang G. Hu J. Wang H. Jiang R. Yao G. Long non-coding RNA PWRN1 affects ovarian fol-licular development by regulating the function of granulosa cells. Reprod. Biomed. Online 2024 48 5 103697 10.1016/j.rbmo.2023.103697 38430661
    [Google Scholar]
  73. Lin X. Nie X. Deng P. Wang L. Hu C. Jin N. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs. Noncoding RNA Res. 2024 9 4 1023 1032 10.1016/j.ncrna.2024.05.003 39022674
    [Google Scholar]
  74. Bouckenheimer J. Fauque P. Lecellier C.H. Bruno C. Commes T. Lemaître J.M. De Vos J. Assou S. Differen-tial long non-coding RNA expression profiles in human oo-cytes and cumulus cells. Sci. Rep. 2018 8 1 2202 10.1038/s41598‑018‑20727‑0 29396444
    [Google Scholar]
  75. Su T. Sereening, verification of differential expression and ovarian specific LncRNA and correlation signal pathway analysis before and after initiation of primordial follicles in mice. 2018
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073327087240926065629
Loading
/content/journals/cchts/10.2174/0113862073327087240926065629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test