Skip to content
2000
image of Identification of Disulfidptosis-Related LncRNA Subtypes, Establishment of a Prognostic Signature, and Characterization of Immune Infiltration in Ovarian Cancer

Abstract

Background

Ovarian Cancer (OC) is a lethal malignant tumor with a poor prognosis. Disulfidptosis is a newly identified form of cell death caused by disulfide stress. Targeting disulfidptosis is a new metabolic therapeutic strategy in cancer treatment. We aimed to establish a disulfidptosis-related lncRNA signature for prognosis prediction and explore its treatment values in OC patients.

Method

Data from the TCGA and GTEx databases and a disulfidptosis gene set were used to establish a disulfidptosis-related lncRNA signature for prognosis prediction in OC patients. Then, we internally and externally (PCR) validated our model. We also built a nomogram to improve our model's predictive power. Afterward, GSEA was employed to explore our model's potential functions. The ESTIMATE, CIBERSORT, TIMER, and ssGSEA were applied to estimate the immune landscape. Finally, the drug sensitivity of certain drugs for OC patients was analyzed.

Results

We built a prognosis model based on seven drlncRNAs, including AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1. Our model performed well by internal validation. PCR data also confirmed the same trend in the lncRNA levels. Furthermore, the nomogram-integrated age, grade, stage, and risk score could accurately predict the survival outcomes of OC patients. Subsequently, GSEA unveiled that our model genes enriched the Hedgehog signaling pathway, a key regulator in OC tumorigenesis. Our predictive signature was associated with immune checkpoints, such as PD-1( < 0.01), PD-L1( < 0.001), and CTLA4 ( < 0.01), which might help screen out OC patients who are sensitive to immunotherapy. Small molecule drugs, such as AZD-2281, GDC-0449, imatinib, and nilotinib, might benefit OC patients with different risk scores.

Conclusion

Our disulfidptosis-related lncRNA signature comprised of AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1 could serve as a prognostic biomarker and guidance to therapy response for OC patients.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073326170240923061119
2024-10-03
2024-11-26
Loading full text...

Full text loading...

References

  1. Shakfa N. Li D. Nersesian S. Wilson-Sanchez J. Koti M. The STING pathway: Therapeutic vulnerabilities in ovarian cancer. Br. J. Cancer 2022 127 4 603 611 10.1038/s41416‑022‑01797‑4 35383278
    [Google Scholar]
  2. Webb P.M. Jordan S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024 21 5 389 400 10.1038/s41571‑024‑00881‑3 38548868
    [Google Scholar]
  3. Cabasag C.J. Fagan P.J. Ferlay J. Vignat J. Laversanne M. Liu L. van der Aa M.A. Bray F. Soerjomataram I. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020. Int. J. Cancer 2022 151 9 1535 1541 10.1002/ijc.34002 35322413
    [Google Scholar]
  4. Arora T. Mullangi S. Vadakekut E.S. Lekkala M.R. Epithelial Ovarian Cancer. StatPearls Treasure Island, FL StatPearls 2024
    [Google Scholar]
  5. St Laurent J. Liu J.F. Treatment Approaches for Platinum-Resistant Ovarian Cancer. J. Clin. Oncol. 2024 42 2 127 133 10.1200/JCO.23.01771 37910841
    [Google Scholar]
  6. Morand S. Devanaboyina M. Staats H. Stanbery L. Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int. J. Mol. Sci. 2021 22 12 6532 10.3390/ijms22126532 34207103
    [Google Scholar]
  7. Bose S. Saha P. Chatterjee B. Srivastava A.K. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: Potential pharmacological targets for cancer therapy. Semin. Cancer Biol. 2022 86 Pt 2 568 579 10.1016/j.semcancer.2022.03.028 35378273
    [Google Scholar]
  8. Liu X. Nie L. Zhang Y. Yan Y. Wang C. Colic M. Olszewski K. Horbath A. Chen X. Lei G. Mao C. Wu S. Zhuang L. Poyurovsky M.V. James You M. Hart T. Billadeau D.D. Chen J. Gan B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023 25 3 404 414 10.1038/s41556‑023‑01091‑2 36747082
    [Google Scholar]
  9. Chen Y. Liu L. Xia L. Wu N. Wang Y. Li H. Chen X. Zhang X. Liu Z. Zhu M. Liao Q. Wang J. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1α degradation. J. Exp. Clin. Cancer Res. 2022 41 1 44 10.1186/s13046‑022‑02252‑1 35101076
    [Google Scholar]
  10. Gao T. Zhang X. Zhao J. Zhou F. Wang Y. Zhao Z. Xing J. Chen B. Li J. Liu S. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett. 2020 469 89 101 10.1016/j.canlet.2019.10.029 31639424
    [Google Scholar]
  11. Sun H. Wang H. Wang X. Aoki Y. Wang X. Yang Y. Cheng X. Wang Z. Wang X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics 2020 10 15 6928 6945 10.7150/thno.43811 32550913
    [Google Scholar]
  12. Wilkerson M.D. Hayes D.N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010 26 12 1572 1573 10.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  13. Cai X. Lin J. Liu L. Zheng J. Liu Q. Ji L. Sun Y. A novel TCGA-validated programmed cell-death-related signature of ovarian cancer. BMC Cancer 2024 24 1 515 10.1186/s12885‑024‑12245‑2 38654239
    [Google Scholar]
  14. Kanehisa M. Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  15. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  16. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  17. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  18. Li T. Fan J. Wang B. Traugh N. Chen Q. Liu J.S. Li B. Liu X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017 77 21 e108 e110 10.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  19. Newman A.M. Steen C.B. Liu C.L. Gentles A.J. Chaudhuri A.A. Scherer F. Khodadoust M.S. Esfahani M.S. Luca B.A. Steiner D. Diehn M. Alizadeh A.A. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019 37 7 773 782 10.1038/s41587‑019‑0114‑2 31061481
    [Google Scholar]
  20. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  21. Ji H. Ren M. Liu T. Sun Y. Prognostic and Immunological Significance of CXCR2 in Ovarian Cancer: A Promising Target for Survival Outcome and Immunotherapeutic Response Assessment. Dis. Markers 2021 2021 1 21 10.1155/2021/5350232 34840630
    [Google Scholar]
  22. Lin L. Chen L. Xie Z. Chen J. Li L. Lin A. Identification of NAD+ Metabolism-Derived Gene Signatures in Ovarian Cancer Prognosis and Immunotherapy. Front. Genet. 2022 13 905238 10.3389/fgene.2022.905238 35783253
    [Google Scholar]
  23. Yang W. Soares J. Greninger P. Edelman E.J. Lightfoot H. Forbes S. Bindal N. Beare D. Smith J.A. Thompson I.R. Ramaswamy S. Futreal P.A. Haber D.A. Stratton M.R. Benes C. McDermott U. Garnett M.J. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013 41 Database issue D955 D961 23180760
    [Google Scholar]
  24. Wang Y. Bryant S.H. Cheng T. Wang J. Gindulyte A. Shoemaker B.A. Thiessen P.A. He S. Zhang J. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017 45 D1 D955 D963 10.1093/nar/gkw1118 27899599
    [Google Scholar]
  25. Geeleher P. Cox N.J. Huang R.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014 15 3 R47 10.1186/gb‑2014‑15‑3‑r47 24580837
    [Google Scholar]
  26. Han X. Song D. Cui Y. Shi Y. Gu X. Pan‐cancer analyses of immunogenic cell death‐derived gene signatures: Potential biomarkers for prognosis and immunotherapy. Cancer Rep. 2024 7 4 e2073 10.1002/cnr2.2073 38627900
    [Google Scholar]
  27. Liu L. Zhan P. Nie D. Fan L. Lin H. Gao L. Mao X. Intermediate-conductance-Ca2-activated K channel IKCa1 is upregulated and promotes cell proliferation in cervical cancer. Med. Sci. Monit. Basic Res. 2017 23 45 57 10.12659/MSMBR.901462 28280257
    [Google Scholar]
  28. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  29. Ashrafizadeh M. Rabiee N. Kumar A.P. Sethi G. Zarrabi A. Wang Y. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov. Today 2022 27 8 2181 2198 10.1016/j.drudis.2022.05.012 35589014
    [Google Scholar]
  30. Chaichian S. Bidgoli S.A. Nikfar B. Moazzami B. LncRNAs and MiRNAs: New targets for resveratrol in ovarian cancer research. Curr. Med. Chem. 2023 30 28 3238 3248 10.2174/1389201024666221111160407 36372916
    [Google Scholar]
  31. Herman A.B. Tsitsipatis D. Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022 82 12 2252 2266 10.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  32. Sideris N. Dama P. Bayraktar S. Stiff T. Castellano L. LncRNAs in breast cancer: a link to future approaches. Cancer Gene Ther. 2022 29 12 1866 1877 10.1038/s41417‑022‑00487‑w 35788171
    [Google Scholar]
  33. Zhang G. Sun J. Zhang X. A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma. Sci. Rep. 2022 12 1 11325 10.1038/s41598‑022‑15251‑1 35790864
    [Google Scholar]
  34. Emami Meybodi S.M. Soleimani N. Yari A. Javadifar A. Tollabi M. Karimi B. Emami Meybodi M. Seyedhossaini S. Brouki Milan P. Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int. J. Biol. Macromol. 2023 225 1049 1071 10.1016/j.ijbiomac.2022.11.167 36414082
    [Google Scholar]
  35. Wang H. Meng Q. Qian J. Li M. Gu C. Yang Y. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol. Ther. 2022 234 108123 10.1016/j.pharmthera.2022.108123 35121000
    [Google Scholar]
  36. Machesky L.M. Deadly actin collapse by disulfidptosis. Nat. Cell Biol. 2023 25 3 375 376 10.1038/s41556‑023‑01100‑4 36918690
    [Google Scholar]
  37. Hu S. Ge M. Gao L. Jiang M. Hu K. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: a meta‑analysis and bioinformatics analysis. Cancer Cell Int. 2021 21 1 686 10.1186/s12935‑021‑02404‑x 34923990
    [Google Scholar]
  38. Zou Y. Chen B. Long non-coding RNA HCP5 in cancer. Int. J. Clin. Chem. 2021 512 33 39
    [Google Scholar]
  39. Wu H. Liu B. Chen Z. Li G. Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020 11 4 233 10.1038/s41419‑020‑2426‑z 32300102
    [Google Scholar]
  40. Wang L. He M. Fu L. Jin Y. Role of lncRNAHCP5/microRNA-525–5p/PRC1 crosstalk in the malignant behaviors of ovarian cancer cells. Exp. Cell Res. 2020 394 1 112129 10.1016/j.yexcr.2020.112129 32511950
    [Google Scholar]
  41. He Y. Fang L. Hu D. Chen S. Shen S. Chen K. Mu J. Li J. Zhang H. Yong-lin L. Zhang L. Necroptosis-associated long noncoding RNAs can predict prognosis and differentiate between cold and hot tumors in ovarian cancer. Front. Oncol. 2022 12 967207 10.3389/fonc.2022.967207 35965557
    [Google Scholar]
  42. Meng C. Zhou J.Q. Liao Y.S. Autophagy-related long non-coding RNA signature for ovarian cancer. J. Int. Med. Res. 2020 48 11 10.1177/0300060520970761 33179541
    [Google Scholar]
  43. Peng Y. Wang H. Huang Q. Wu J. Zhang M. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer. J. Ovarian Res. 2022 15 1 8 10.1186/s13048‑021‑00930‑w 35031063
    [Google Scholar]
  44. Liang Y. Sun H.X. Ma B. Meng Q.K. Identification of a genomic instability-related long noncoding RNA prognostic model in colorectal cancer based on bioinformatic analysis. Dis. Markers 2022 2022 1 16 10.1155/2022/4556585 35711569
    [Google Scholar]
  45. Gu Y. Liu X. Liao L. Gao Y. Shi Y. Ni J. He G. Relationship between lipid metabolism and Hedgehog signaling pathway. J. Steroid Biochem. Mol. Biol. 2021 209 105825 10.1016/j.jsbmb.2021.105825 33529733
    [Google Scholar]
  46. Hinshaw D.C. Hanna A. Lama-Sherpa T. Metge B. Kammerud S.C. Benavides G.A. Kumar A. Alsheikh H.A. Mota M. Chen D. Ballinger S.W. Rathmell J.C. Ponnazhagan S. Darley-Usmar V. Samant R.S. Shevde L.A. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Cancer Res. 2021 81 21 5425 5437 10.1158/0008‑5472.CAN‑20‑1723 34289986
    [Google Scholar]
  47. Huang Q. Wei X. Li W. Ma Y. Chen G. Zhao L. Jiang Y. Xie S. Chen Q. Chen T. Endogenous propionibacterium acnes promotes ovarian cancer progression via regulating hedgehog signalling pathway. Cancers 2022 14 21 5178 10.3390/cancers14215178 36358596
    [Google Scholar]
  48. Pan Y. Zhou J. Zhang W. Yan L. Lu M. Dai Y. Zhou H. Zhang S. Yang J. The Sonic Hedgehog signaling pathway regulates autophagy and migration in ovarian cancer. Cancer Med. 2021 10 13 4510 4521 10.1002/cam4.4018 34076346
    [Google Scholar]
  49. Zhang H. Hu L. Cheng M. Wang Q. Hu X. Chen Q. The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer. Oncol. Rep. 2020 44 6 2610 2620 10.3892/or.2020.7798 33125122
    [Google Scholar]
  50. Bader J.E. Voss K. Rathmell J.C. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol. Cell 2020 78 6 1019 1033 10.1016/j.molcel.2020.05.034 32559423
    [Google Scholar]
  51. Liu X. Lei X. Huang S. Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb. Chem. High Throughput Screen. 2023 27 10.2174/0113862073255266231025111125 38031784
    [Google Scholar]
  52. Washah H.N. Salifu E.Y. Soremekun O. Elrashedy A.A. Munsamy G. Olotu F.A. Soliman M.E.S. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives. Comb. Chem. High Throughput Screen. 2020 23 8 687 698 10.2174/1386207323666200427113734 32338212
    [Google Scholar]
  53. Zhang Y. Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020 17 8 807 821 10.1038/s41423‑020‑0488‑6 32612154
    [Google Scholar]
  54. Pawłowska A. Skiba W. Suszczyk D. Kuryło W. Jakubowicz-Gil J. Paduch R. Wertel I. The Dual Blockade of the TIGIT and PD-1/PD-L1 Pathway as a New Hope for Ovarian Cancer Patients. Cancers (Basel) 2022 14 23 5757 10.3390/cancers14235757 36497240
    [Google Scholar]
  55. Oliveira G. Wu C.J. Dynamics and specificities of T cells in cancer immunotherapy. Nat. Rev. Cancer 2023 23 5 295 316 10.1038/s41568‑023‑00560‑y 37046001
    [Google Scholar]
  56. Yu W.D. Sun G. Li J. Xu J. Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019 452 66 70 10.1016/j.canlet.2019.02.048 30902563
    [Google Scholar]
  57. Li B. Chan H.L. Chen P. Immune Checkpoint Inhibitors: Basics and Challenges. Curr. Med. Chem. 2019 26 17 3009 3025 10.2174/0929867324666170804143706 28782469
    [Google Scholar]
  58. Dumitru A. Dobrica E.C. Croitoru A. Cretoiu S.M. Gaspar B.S. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer. Int. J. Mol. Sci. 2022 23 20 12067 10.3390/ijms232012067 36292922
    [Google Scholar]
  59. Pawłowska A. Suszczyk D. Okła K. Barczyński B. Kotarski J. Wertel I. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment. Clin. Exp. Immunol. 2019 195 3 334 344 10.1111/cei.13255 30582756
    [Google Scholar]
  60. Gou Q. Dong C. Xu H. Khan B. Jin J. Liu Q. Shi J. Hou Y. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020 11 11 955 10.1038/s41419‑020‑03140‑2 33159034
    [Google Scholar]
  61. Czystowska-Kuzmicz M. Sosnowska A. Nowis D. Ramji K. Szajnik M. Chlebowska-Tuz J. Wolinska E. Gaj P. Grazul M. Pilch Z. Zerrouqi A. Graczyk-Jarzynka A. Soroczynska K. Cierniak S. Koktysz R. Elishaev E. Gruca S. Stefanowicz A. Blaszczyk R. Borek B. Gzik A. Whiteside T. Golab J. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 2019 10 1 3000 10.1038/s41467‑019‑10979‑3 31278254
    [Google Scholar]
  62. Khatoon E. Parama D. Kumar A. Alqahtani M.S. Abbas M. Girisa S. Sethi G. Kunnumakkara A.B. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci. 2022 306 120827 10.1016/j.lfs.2022.120827 35907493
    [Google Scholar]
  63. Muaibati M. Abuduyilimu A. Zhang T. Dai Y. Li R. Huang F. Li K. Tong Q. Huang X. Zhuang L. Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer. Expert Rev. Mol. Med. 2023 25 e6 10.1017/erm.2023.3 36691778
    [Google Scholar]
  64. O’Malley D.M. New Therapies for Ovarian Cancer. J. Natl. Compr. Canc. Netw. 2019 17 5.5 619 621 31117037
    [Google Scholar]
  65. Wang H. Wang D. Gu T. Zhu M. Cheng L. Dai W. AADAC promotes therapeutic activity of cisplatin and imatinib against ovarian cancer cells. Histol. Histopathol. 2022 37 9 899 907 35451495
    [Google Scholar]
  66. Weigel M.T. Rath K. Alkatout I. Wenners A.S. Schem C. Maass N. Jonat W. Mundhenke C. Nilotinib in combination with carboplatin and paclitaxel is a candidate for ovarian cancer treatment. Oncology 2014 87 4 232 245 10.1159/000363656 25116401
    [Google Scholar]
  67. Shyam Sunder S. Sharma U.C. Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023 8 1 262 10.1038/s41392‑023‑01469‑6 37414756
    [Google Scholar]
  68. Blay J.Y. von Mehren M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin. Oncol. 2011 38 0 1 Suppl. 1 S3 S9 10.1053/j.seminoncol.2011.01.016 21419934
    [Google Scholar]
  69. Murai J. Huang S.N. Das B.B. Renaud A. Zhang Y. Doroshow J.H. Ji J. Takeda S. Pommier Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012 72 21 5588 5599 10.1158/0008‑5472.CAN‑12‑2753 23118055
    [Google Scholar]
  70. DiSilvestro P. Banerjee S. Colombo N. Scambia G. Kim B.G. Oaknin A. Friedlander M. Lisyanskaya A. Floquet A. Leary A. Sonke G.S. Gourley C. Oza A. González-Martín A. Aghajanian C. Bradley W. Mathews C. Liu J. McNamara J. Lowe E.S. Ah-See M.L. Moore K.N. SOLO1 Investigators Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J. Clin. Oncol. 2023 41 3 609 617 10.1200/JCO.22.01549 36082969
    [Google Scholar]
  71. Gao Q. Zhu J. Zhao W. Huang Y. An R. Zheng H. Qu P. Wang L. Zhou Q. Wang D. Lou G. Wang J. Wang K. Low J. Kong B. Rozita A.M. Sen L.C. Yin R. Xie X. Liu J. Sun W. Su J. Zhang C. Zang R. Ma D. Olaparib Maintenance Monotherapy in Asian Patients with Platinum-Sensitive Relapsed Ovarian Cancer: Phase III Trial (L-MOCA). Clin. Cancer Res. 2022 28 11 2278 2285 10.1158/1078‑0432.CCR‑21‑3023 35131903
    [Google Scholar]
  72. González-Martín A. Desauw C. Heitz F. Cropet C. Gargiulo P. Berger R. Ochi H. Vergote I. Colombo N. Mirza M.R. Tazi Y. Canzler U. Zamagni C. Guerra-Alia E.M. Levaché C.B. Marmé F. Bazan F. Gregorio N. de Dohollou N. Fasching P.A. Scambia G. Rubio-Pérez M.J. Milenkova T. Costan C. Pautier P. Ray-Coquard I. Maintenance olaparib plus bevacizumab in patients with newly diagnosed advanced high-grade ovarian cancer: Main analysis of second progression-free survival in the phase III PAOLA-1/ENGOT-ov25 trial. Euro. J. Cancer 2022 174 221 231
    [Google Scholar]
  73. Smith M. Pothuri B. Appropriate Selection of PARP Inhibitors in Ovarian Cancer. Curr. Treat. Options Oncol. 2022 23 6 887 903 10.1007/s11864‑022‑00938‑4 35412195
    [Google Scholar]
  74. Rudin C.M. Vismodegib. Clin. Cancer Res. 2012 18 12 3218 3222 10.1158/1078‑0432.CCR‑12‑0568 22679179
    [Google Scholar]
  75. Dierks C. GDC-0449--targeting the hedgehog signaling pathway. Recent Results Cancer Res. 2010 184 235 238 10.1007/978‑3‑642‑01222‑8_17 20072843
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073326170240923061119
Loading
/content/journals/cchts/10.2174/0113862073326170240923061119
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: disulfidptosis ; immune infiltration ; varian cancer ; lncRNA ; signature ; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test