Skip to content
2000
image of ADAMTS16 Suppression by MicroRNA-25 Leads to Oncogenic Properties in Renal Cell Carcinoma

Abstract

Introduction

Increasing evidence indicates that microRNAs (miRNAs) play a crucial role in modulating tumor growth. This study is centered on investigating the contribution of miR-25 to the progression of Renal Cell Carcinoma (RCC).

Methods

The investigators examined the expression levels of miR-25 and ADAMTS16 in RCC samples and cell lines. The association between miR-25 and ADAMTS16 was validated a luciferase reporter assay. Cell viability, apoptosis, migration, and invasion were evaluated utilizing CCK-8 and flow cytometry techniques, while the expression levels of ADAMTS16, β-catenin, GSK-3β, and p-GSK-3β were assessed through western blot analysis.

Results

The investigation revealed elevated expression levels of miR-25 in RCC tissues. Subsequently, ADAMTS16 was identified as a target of miR-25. Increased miR-25 levels were associated with decreased expression of ADAMTS16, resulting in enhanced cell viability and diminished apoptosis. Conversely, inhibition of miR-25 led to decreased cell viability, proliferation, and migration. Additionally, the researchers observed that miR-25 triggered the phosphorylation of GSK-3β and β-catenin while leaving the total GSK-3β level unaffected.

Conclusion

This study suggests that miR-25 regulates the expression of ADAMTS16 through the Wnt/β-catenin signaling pathway, providing new insights into the cause and potential treatment of RCC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073321326240718063755
2024-07-22
2024-11-22
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020 70 1 7 30 10.3322/caac.21590 31912902
    [Google Scholar]
  2. Denisenko T.V. Budkevich I.N. Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018 9 2 117 10.1038/s41419‑017‑0063‑y 29371589
    [Google Scholar]
  3. Nasim F. Sabath B.F. Eapen G.A. Lung Cancer. Med. Clin. North Am. 2019 103 3 463 473 10.1016/j.mcna.2018.12.006 30955514
    [Google Scholar]
  4. Zappa C. Mousa S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016 5 3 288 300 10.21037/tlcr.2016.06.07 27413711
    [Google Scholar]
  5. Herrera-Solorio A.M. Peralta-Arrieta I. Armas L.L. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol. Oncol. 2020 15 4 1110 1129 33433063
    [Google Scholar]
  6. Goyal B. Yadav S.R.M. Awasthee N. Gupta S. Kunnumakkara A.B. Gupta S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188502 10.1016/j.bbcan.2021.188502 33428963
    [Google Scholar]
  7. Guyon N. Garnier D. Briand J. Nadaradjane A. Bougras-Cartron G. Raimbourg J. Campone M. Heymann D. Vallette F.M. Frenel J.S. Cartron P.F. Anti-PD1 therapy induces lymphocyte-derived exosomal miRNA-4315 release inhibiting Bim-mediated apoptosis of tumor cells. Cell Death Dis. 2020 11 12 1048 10.1038/s41419‑020‑03224‑z 33311449
    [Google Scholar]
  8. Vu T. Yang S. Datta P.K. MiR-216b/Smad3/BCL-2 axis is involved in smoking-mediated drug resistance in non-small cell lung cancer. Cancers 2020 12 7 1879 10.3390/cancers12071879 32668597
    [Google Scholar]
  9. Hirschberger S. Hinske L.C. Kreth S. MiRNAs: Dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett. 2018 431 11 21 10.1016/j.canlet.2018.05.020 29800684
    [Google Scholar]
  10. Li Q. Wang H. Peng H. Huang Q. Huyan T. Huang Q. Yang H. Shi J. MicroRNAs: Key players in bladder cancer. Mol. Diagn. Ther. 2019 23 5 579 601 10.1007/s40291‑019‑00410‑4 31325035
    [Google Scholar]
  11. Boldrini L. Giordano M. Melfi F. Lucchi M. Fontanini G. Expression of miRNA-25 in young and old lung adenocarcinoma. J. Res. Med. Sci. 2021 26 1 132 10.4103/jrms.JRMS_830_19 35126595
    [Google Scholar]
  12. Schwartz C.J. Dolgalev I. Yoon E. Osman I. Heguy A. Vega-Saenz de Miera E.C. Nimeh D. Jour G. Darvishian F. Microglandular adenosis is an advanced precursor breast lesion with evidence of molecular progression to matrix-producing metaplastic carcinoma. Hum. Pathol. 2019 85 65 71 10.1016/j.humpath.2018.10.021 30428388
    [Google Scholar]
  13. Kordowski F. Kolarova J. Schafmayer C. Buch S. Goldmann T. Marwitz S. Kugler C. Scheufele S. Gassling V. Németh C.G. Brosch M. Hampe J. Lucius R. Röder C. Kalthoff H. Siebert R. Ammerpohl O. Reiss K. Aberrant DNA methylation of ADAMTS16 in colorectal and other epithelial cancers. BMC Cancer 2018 18 1 796 10.1186/s12885‑018‑4701‑2 30081852
    [Google Scholar]
  14. Pyun J.A. Kim S. Kwack K. Interaction between thyroglobulin and ADAMTS16 in premature ovarian failure. Clin. Exp. Reprod. Med. 2014 41 3 120 124 10.5653/cerm.2014.41.3.120 25309856
    [Google Scholar]
  15. Wang X. He Y. Mackowiak B. Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2020 70 4 784 795 33127832
    [Google Scholar]
  16. Wang S. Zhang Z. Gao Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol. Ther. Nucleic Acids 2021 23 552 564 10.1016/j.omtn.2020.11.018 33510943
    [Google Scholar]
  17. Zhang M. Wang Y. Jiang L. Song X. Zheng A. Gao H. Wei M. Zhao L. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J. Exp. Clin. Cancer Res. 2021 40 1 41 10.1186/s13046‑021‑01844‑7 33494806
    [Google Scholar]
  18. Wang Y. Tao B. Li J. Mao X. He W. Chen Q. Melatonin inhibits the progression of oral squamous cell carcinoma via inducing miR-25-5p expression by directly targeting NEDD9. Front. Oncol. 2020 10 543591 10.3389/fonc.2020.543591 33344223
    [Google Scholar]
  19. Yu D.H. Ruan X.L. Huang J.Y. Liu X.P. Ma H.L. Chen C. Hu W.D. Li S. Analysis of the interaction network of Hub miRNAs-Hub genes, being involved in idiopathic pulmonary fibers and its emerging role in non-small cell lung cancer. Front. Genet. 2020 11 302 10.3389/fgene.2020.00302 32300359
    [Google Scholar]
  20. Mead T.J. Apte S.S. ADAMTS proteins in human disorders. Matrix Biol. 2018 71-72 225 239 10.1016/j.matbio.2018.06.002 29885460
    [Google Scholar]
  21. Verma P. Dalal K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J. Cell. Biochem. 2011 112 12 3507 3514 10.1002/jcb.23298 21815191
    [Google Scholar]
  22. Kelwick R. Desanlis I. Wheeler G.N. Edwards D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015 16 1 113 10.1186/s13059‑015‑0676‑3 26025392
    [Google Scholar]
  23. Nandadasa S. Foulcer S. Apte S.S. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol. 2014 35 34 41 10.1016/j.matbio.2014.01.005 24444773
    [Google Scholar]
  24. Cal S. Obaya A.J. Llamazares M. Garabaya C. Quesada V. López-Otín C. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 2002 283 1-2 49 62 10.1016/S0378‑1119(01)00861‑7 11867212
    [Google Scholar]
  25. Lind G.E. Kleivi K. Meling G.I. Teixeira M.R. Thiis-Evensen E. Rognum T.O. Lothe R.A. ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell. Oncol. 2006 28 5-6 259 272 17167179
    [Google Scholar]
  26. de Arao Tan I. Ricciardelli C. Russell D.L. The metalloproteinase ADAMTS1: A comprehensive review of its role in tumorigenic and metastatic pathways. Int. J. Cancer 2013 133 10 2263 2276 10.1002/ijc.28127 23444028
    [Google Scholar]
  27. Chen J. Zhang C. Xu X. Zhu X. Dai D. Downregulation of A disintegrin and metallopeptidase with thrombospondin motif type 1 by DNA hypermethylation in human gastric cancer. Mol. Med. Rep. 2015 12 2 2487 2494 10.3892/mmr.2015.3667 25936341
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073321326240718063755
Loading
/content/journals/cchts/10.2174/0113862073321326240718063755
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: proliferation ; metastasis ; ADAMTS16 ; renal cell carcinoma ; miR-25 ; invasion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test