Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

ChangPu YuJin Tang (CPYJT) is a Chinese herbal formula that has been shown to be an effective therapeutic strategy for pediatric patients with Tourette Syndrome (TS). Using an integrated strategy of network pharmacology and animal model, the aim of this study was to investigate the mechanism of CPYJT in the treatment of TS.

Methods

Compound libraries of CPYJT were established using databases, such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The TCMSP database and Swiss Target Prediction database were used to predict the targets. The above results were constructed into a CPYJT-Drug-Component-Target network. Moreover, TS targets were predicted using GeneCards and other databases. The targets corresponding to the potential ingredients in CPYJT and the targets corresponding to TS were taken as the intersections to construct the CPYJT-TS network. The target network was analysed by PPI using the string database. GO and KEGG enrichment analyses were performed on the target network. The whole process was performed using Cytoscape 3.7.2 to make visual network diagrams of the results. CPYJT was characterised by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS). Transmission Electron Microscopy (TEM) was used to observe the structural changes of CPYJT on the neuronal cells of the IDPN model rats. RT-PCR and Western Blot were used to analyse the changes in the mRNA and protein expression levels of BDNF, TrkB, PI3K, and AKT in the cortex, striatum, and thalamus brain regions after CPYJT administration in IDPN model rats.

Results

Network pharmacology and UHPLC-MS studies revealed that CPYJT acted on the TS through multiple neurotransmitters and the BDNF/TrkB and PI3K/AKT signalling pathways. CPYJT ameliorated neurocellular structural damage in the cortex, striatum, and thalamus of TS model rats. Additionally, CPYJT up-regulated the levels of BDNF, TrkB, PI3k, and AKT in the cortex, striatum, and thalamus of TS model rats.

Conclusion

It was found that CPYJT protected neuronal cells from structural damage in multiple brain regions and affected the expression levels of BDNF, TrkB, PI3K, and Akt in the cortex, striatum, and thalamus during TS treatment.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295447240430113053
2024-05-03
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/1/CCHTS-28-1-14.html?itemId=/content/journals/cchts/10.2174/0113862073295447240430113053&mimeType=html&fmt=ahah

References

  1. SetK.K. WarnerJ.N. Tourette syndrome in children: An update.Curr. Probl. Pediatr. Adolesc. Health Care202151710103210.1016/j.cppeds.2021.101032 34305006
    [Google Scholar]
  2. DeebW. MalatyI.A. MathewsC.A. Tourette disorder and other tic disorders.Handb. Clin. Neurol.201916512315310.1016/B978‑0‑444‑64012‑3.00008‑3 31727209
    [Google Scholar]
  3. JafariF. AbbasiP. RahmatiM. HodhodiT. KazeminiaM. Systematic review and meta-analysis of tourette syndrome prevalence; 1986 to 2022.Pediatr. Neurol.202213761610.1016/j.pediatrneurol.2022.08.010 36182698
    [Google Scholar]
  4. YangC. ZhangL. ZhuP. ZhuC. GuoQ. The prevalence of tic disorders for children in China.Medicine 20169530e435410.1097/MD.0000000000004354 27472724
    [Google Scholar]
  5. EapenV. SneddenC. ČrnčecR. PickA. SachdevP. Tourette syndrome, co-morbidities and quality of life.Aust. N. Z. J. Psychiatry2016501829310.1177/0004867415594429 26169656
    [Google Scholar]
  6. BlochM.H. LeckmanJ.F. Clinical course of Tourette syndrome.J. Psychosom. Res.200967649750110.1016/j.jpsychores.2009.09.002 19913654
    [Google Scholar]
  7. WorbeY. Marrakchi-KacemL. LecomteS. ValabregueR. PouponF. GuevaraP. TucholkaA. ManginJ.F. VidailhetM. LehericyS. HartmannA. PouponC. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.Brain2015138247248210.1093/brain/awu311 25392196
    [Google Scholar]
  8. WorbeY. GerardinE. HartmannA. ValabrégueR. ChupinM. TremblayL. VidailhetM. ColliotO. LehéricyS. Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome.Brain2010133123649366010.1093/brain/awq293 20959309
    [Google Scholar]
  9. NaroA. BilleriL. ColucciV.P. Le CauseM. De DomenicoC. CiattoL. BramantiP. BramantiA. CalabròR.S. Brain functional connectivity in chronic tic disorders and Gilles de la Tourette syndrome.Prog. Neurobiol.202019410188410.1016/j.pneurobio.2020.101884 32659317
    [Google Scholar]
  10. LiY. ShiZ. ZhaoB. Clinical efficacy observation of modified Changpu Yujin Tang in the treatment of 60 cases of infantile transient tic disorder.J. Pediat. Trad. Chinese Med.20151132730
    [Google Scholar]
  11. GaoH. ShiZ. LiX. WangJ. ShangJ. The changes of striatal DA system in IDPN induced TS model rats and the intervention effect of Changpu Yujin Tang.Lishizhen Med. Materia Medica Res.20162761367136910.3969/j.issn.1008‑0805.2016.06.031
    [Google Scholar]
  12. FengP. LiY. TianW. ChenJ. ShangJ. WangQ. Effects of Changpu Yujin Decoction on the expression of synaptic endocytosis related proteins in a rat model of Tourette syndrome.Zhongchengyao20234541101110810.3969/j.issn.1001‑1528.2023.04.011
    [Google Scholar]
  13. WangN. QinD. XieY. WuX. WangD. Hang-Yang; Li, X.; Xiong, L.; Liang, J. Traditional Chinese Medicine Strategy for Patients with Tourette Syndrome Based on Clinical Efficacy and Safety: A Meta-Analysis of 47 Randomized Controlled Trials.BioMed Res. Int.2021202111110.1155/2021/6630598 33778073
    [Google Scholar]
  14. ZhengY. ZhangZ.J. HanX.M. DingY. ChenY.Y. WangX.F. WeiX.W. WangM.J. ChengY. NieZ.H. ZhaoM. ZhengX.X. A proprietary herbal medicine (5‐ L ing G ranule) for T ourette syndrome: A randomized controlled trial.J. Child Psychol. Psychiatry2016571748310.1111/jcpp.12432 26072932
    [Google Scholar]
  15. WangX. HuY. ZhouX. LiS. Editorial: Network pharmacology and traditional medicine: Setting the new standards by combining In silico and experimental work.Front. Pharmacol.202213100253710.3389/fphar.2022.1002537 36339546
    [Google Scholar]
  16. GaoH. WangW. ShangJ. LiX. YangX. WangJ. ShiZ. Influence of ChangPu YuJin Decoction on DA Metabolic Enzyme of TS Rat Model.Western J. Trad. Chinese Med.2020339202210.12174/j.issn.1004‑6852.2020.09.06
    [Google Scholar]
  17. GaoH. WangW. LiX. YangX. WangJ. ShangJ. ShiZ. Effect of Changpu Yujin Decoction on monoamine neurotransmitters in Tourette syndrome model rats.Pharmacol. Clinics Chinese Materia Medica331135138
    [Google Scholar]
  18. TiwariP. AliS.A. PuriB. KumarA. DatusaliaA.K. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach.Phytomedicine202311915497610.1016/j.phymed.2023.154976 37573808
    [Google Scholar]
  19. SaimaP. LathaS. SharmaR. KumarA. Role of network pharmacology in prediction of mechanism of neuroprotective compounds.Methods Mol. Biol.2024276115917910.1007/978‑1‑0716‑3662‑6_13 38427237
    [Google Scholar]
  20. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  21. YanP. WeiY. WangM. TaoJ. OuyangH. DuZ. LiS. JiangH. Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice.Food Funct.20221384714473310.1039/D1FO04386B 35383784
    [Google Scholar]
  22. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  23. YuH. ChenJ. XuX. LiY. ZhaoH. FangY. LiX. ZhouW. WangW. WangY. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.PLoS One201275e3760810.1371/journal.pone.0037608 22666371
    [Google Scholar]
  24. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  25. DainaA. ZoeteV. A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  26. RappaportN. TwikM. PlaschkesI. NudelR. Iny SteinT. LevittJ. GershoniM. MorreyC.P. SafranM. LancetD. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.Nucleic Acids Res.201745D1D877D88710.1093/nar/gkw1012 27899610
    [Google Scholar]
  27. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  28. YuanN. GongL. TangK. HeL. HaoW. LiX. MaQ. ChenJ. An integrated pharmacology-based analysis for antidepressant mechanism of chinese herbal formula Xiao-Yao-San.Front. Pharmacol.20201128410.3389/fphar.2020.00284 32256358
    [Google Scholar]
  29. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  30. ZhangJ.Y. HongC.L. ChenH.S. ZhouX.J. ZhangY.J. EfferthT. YangY.X. LiC.Y. Target identification of active constituents of shen qi wan to treat kidney yang deficiency using computational target fishing and network pharmacology.Front. Pharmacol.20191065010.3389/fphar.2019.00650 31275142
    [Google Scholar]
  31. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  32. ValenteT.W. FujimotoK. Bridging: Locating critical connectors in a network.Soc. Networks201032321222010.1016/j.socnet.2010.03.003 20582157
    [Google Scholar]
  33. YuG. WangW. WangX. XuM. ZhangL. DingL. GuoR. ShiY. Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis.BMC Complement. Altern. Med.201818129210.1186/s12906‑018‑2356‑9 30382864
    [Google Scholar]
  34. MissiuroP.V. LiuK. ZouL. RossB.C. ZhaoG. LiuJ.S. GeH. Information flow analysis of interactome networks.PLOS Comput. Biol.200954e100035010.1371/journal.pcbi.1000350 19503817
    [Google Scholar]
  35. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  36. RamanK. DamarajuN. JoshiG.K. The organisational structure of protein networks: Revisiting the centrality–lethality hypothesis.Syst. Synth. Biol.201481738110.1007/s11693‑013‑9123‑5 24592293
    [Google Scholar]
  37. GuoQ. ZhongM. XuH. MaoX. ZhangY. LinN. A systems biology perspective on the molecular mechanisms underlying the therapeutic effects of buyang huanwu decoction on ischemic stroke.Rejuvenation Res.201518431332510.1089/rej.2014.1635 25687091
    [Google Scholar]
  38. ZhangY. GuoX. WangD. LiR. LiX. XuY. LiuZ. SongZ. LinY. LiZ. LinN. A systems biology-based investigation into the therapeutic effects of Gansui Banxia Tang on reversing the imbalanced network of hepatocellular carcinoma.Sci. Rep.201441415410.1038/srep04154 24561634
    [Google Scholar]
  39. ZhangY. WangD. TanS. XuH. LiuC. LinN. A systems biology-based investigation into the pharmacological mechanisms of wu tou tang acting on rheumatoid arthritis by integrating network analysis.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/548498 23690848
    [Google Scholar]
  40. BaderG.D. HogueC.W.V. An automated method for finding molecular complexes in large protein interaction networks.BMC Bioinformatics200341210.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  41. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  42. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  43. GuoY. GanH. XuS. ZengG. XiaoL. DingZ. ZhuJ. XiongX. FuZ. Deciphering the mechanism of xijiao dihuang decoction in treating psoriasis by network pharmacology and experimental validation.Drug Des. Devel. Ther.2023172805281910.2147/DDDT.S417954 37719360
    [Google Scholar]
  44. PeiZ. GuoX. ZhengF. YangZ. LiT. YuZ. LiX. GuoX. ChenQ. FuC. TangT. FengD. WangY. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury.Phytomedicine202412915556610.1016/j.phymed.2024.155566 38565001
    [Google Scholar]
  45. De VosR.C.H. MocoS. LommenA. KeurentjesJ.J.B. BinoR.J. HallR.D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry.Nat. Protoc.20072477879110.1038/nprot.2007.95 17446877
    [Google Scholar]
  46. DopplerM. KlugerB. BueschlC. SchneiderC. KrskaR. DelcambreS. HillerK. LemmensM. SchuhmacherR. Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants.Int. J. Mol. Sci.2016177101710.3390/ijms17071017 27367667
    [Google Scholar]
  47. LiuY. HuY. QinX. Metabonomics study on interventions of Huangqi Jianzhong Decoction against chronic atrophic gastritis in rats.Chin. Tradit. Herbal Drugs201849102312231910.7501/j.issn.0253‑2670.2018.10.011
    [Google Scholar]
  48. FeketeS. EgbertsK. PreisslerT. WewetzerC. Mehler-WexC. RomanosM. GerlachM. Estimation of a preliminary therapeutic reference range for children and adolescents with tic disorders treated with tiapride.Eur. J. Clin. Pharmacol.202177216317010.1007/s00228‑020‑03000‑0 32986159
    [Google Scholar]
  49. CavannaA.E. EddyC. RickardsH.E. Cognitive functioning in Tourette syndrome.Discov. Med.2019843191195 20040269
    [Google Scholar]
  50. YuanH. NiX. ZhengM. HanX. SongY. YuM. Effect of catalpol on behavior and neurodevelopment in an ADHD rat model.Biomed. Pharmacother.201911810903310.1016/j.biopha.2019.109033 31545235
    [Google Scholar]
  51. SongY. YuanH. ChenT. LuM. LeiS. HanX. An Shen Ding Zhi Ling alleviates symptoms of attention deficit hyperactivity disorder via anti-inflammatory effects in spontaneous hypertensive rats.Front. Pharmacol.20211161758110.3389/fphar.2020.617581 33536923
    [Google Scholar]
  52. BondarevA.D. AttwoodM.M. JonssonJ. ChubarevV.N. TarasovV.V. SchiöthH.B. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions.Expert Opin. Drug Discov.202015111291130710.1080/17460441.2020.1791075 32648789
    [Google Scholar]
  53. SinghR. KumarA. LatherV. SharmaR. PanditaD. Identification of novel signal of Raynaud’s phenomenon with Calcitonin Gene-Related Peptide(CGRP) antagonists using data mining algorithms and network pharmacological approaches.Expert Opin. Drug Saf.202423223123810.1080/14740338.2023.2248877 37594041
    [Google Scholar]
  54. RuscianoI. MarviM.V. Owusu ObengE. MongiorgiS. RamazzottiG. FolloM.Y. ZoliM. MorandiL. AsioliS. FabbriV.P. McCubreyJ.A. SuhP.G. ManzoliL. CoccoL. RattiS. Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology.Adv. Biol. Regul.20217910077110.1016/j.jbior.2020.100771 33303387
    [Google Scholar]
  55. LlorensJ. DemêmesD. SansA. The behavioral syndrome caused by 3,3′-iminodipropionitrile and related nitriles in the rat is associated with degeneration of the vestibular sensory hair cells.Toxicol. Appl. Pharmacol.1993123219921010.1006/taap.1993.1238 8248927
    [Google Scholar]
  56. Ikenouchi-SugitaA. YoshimuraR. HayashiK. UedaN. Umene-NakanoW. HoriH. NakamuraJ. A case of late-onset Tourette’s disorder successfully treated with aripiprazole: View from blood levels of catecholamine metabolites and brain-derived neurotrophic factor (BDNF). World J. Biol. Psychiatry,2009104-397798010.1080/15622970902718147 19225990
    [Google Scholar]
  57. WangZ. MaiaT.V. MarshR. ColibazziT. GerberA. PetersonB.S. The neural circuits that generate tics in Tourette’s syndrome.Am. J. Psychiatry2011168121326133710.1176/appi.ajp.2011.09111692 21955933
    [Google Scholar]
  58. McCairnK.W. BronfeldM. BelelovskyK. Bar-GadI. The neurophysiological correlates of motor tics following focal striatal disinhibition.Brain200913282125213810.1093/brain/awp142 19506070
    [Google Scholar]
  59. WorbeY. BaupN. GrabliD. ChaigneauM. MounayarS. McCairnK. FégerJ. TremblayL. Behavioral and movement disorders induced by local inhibitory dysfunction in primate striatum.Cereb. Cortex20091981844185610.1093/cercor/bhn214 19068490
    [Google Scholar]
  60. LiuS. CuiJ. NiuZ. YiM. ZhangX. CheF. MaX. Do obsessive–compulsive disorder and Tourette syndrome share a common susceptibility gene? An association study of the BDNF Val66Met polymorphism in the Chinese Han population.World J. Biol. Psychiatry201516860260910.3109/15622975.2015.1012226 25771937
    [Google Scholar]
  61. ShangY. WangN. ZhangE. LiuQ. LiH. ZhaoX. The brain-derived neurotrophic factor Val66Met polymorphism is associated with female obsessive-compulsive disorder: An updated meta-analysis of 2765 obsessive-compulsive disorder cases and 5558 controls.Front. Psychiatry20221268504110.3389/fpsyt.2021.685041 35095581
    [Google Scholar]
  62. KuhnJ. JanouschekH. RaptisM. RexS. LenartzD. NeunerI. MottaghyF.M. SchneiderF. SchaeferW.M. SturmV. GründerG. VernalekenI. In vivo evidence of deep brain stimulation-induced dopaminergic modulation in Tourette’s syndrome.Biol. Psychiatry2012715e11e1310.1016/j.biopsych.2011.09.035 22129758
    [Google Scholar]
  63. LaiK.N. ShuteJ.K. LindleyI.J. LaiF.M. YuA.W.Y. LiP.K.T. LaiC.K.W. Neutrophil attractant protein-1 interleukin 8 and its autoantibodies in IgA nephropathy.Clin. Immunol. Immunopathol.1996801475410.1006/clin.1996.0093 8674239
    [Google Scholar]
  64. KuoH. LiuF. Synaptic wiring of corticostriatal circuits in basal ganglia: Insights into the pathogenesis of neuropsychiatric disorders.eneuro201963197610.1523/ENEURO.0076‑19.2019
    [Google Scholar]
  65. YuW. ZhangX. ShiX. NiuY. CuiX. Effects of jianpizhidong decoction on expression of serum BDNF in Tourette syndrom children.Zhonghua Zhongyiyao Xuekan2019370233333610.13193/j.issn.1673‑7717.2019.02.017
    [Google Scholar]
  66. WonS.Y. LeeP. KimH.M. Synaptic organizer: Slitrks and type IIa receptor protein tyrosine phosphatases.Curr. Opin. Struct. Biol.2019549510310.1016/j.sbi.2019.01.010 30822649
    [Google Scholar]
  67. PaschouP. The genetic basis of Gilles de la Tourette Syndrome.Neurosci. Biobehav. Rev.20133761026103910.1016/j.neubiorev.2013.01.016 23333760
    [Google Scholar]
  68. EngelnM. SongY. ChandraR. LaA. FoxM.E. EvansB. TurnerM.D. ThomasS. FrancisT.C. HertzanoR. LoboM.K. Individual differences in stereotypy and neuron subtype translatome with TrkB deletion.Mol. Psychiatry20212661846185910.1038/s41380‑020‑0746‑0 32366954
    [Google Scholar]
  69. MaY.L. WangH.L. WuH.C. WeiC.L. LeeE.H.Y. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats.Neuroscience199782495796710.1016/S0306‑4522(97)00325‑4 9466420
    [Google Scholar]
  70. MizunoM. YamadaK. OlariuA. NawaH. NabeshimaT. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats.J. Neurosci.200020187116712110.1523/JNEUROSCI.20‑18‑07116.2000 10995859
    [Google Scholar]
  71. YamadaK. MizunoM. NabeshimaT. Role for brain-derived neurotrophic factor in learning and memory.Life Sci.200270773574410.1016/S0024‑3205(01)01461‑8 11833737
    [Google Scholar]
  72. MinichielloL. KorteM. WolferD. KühnR. UnsickerK. CestariV. Rossi-ArnaudC. LippH.P. BonhoefferT. KleinR. Essential role for TrkB receptors in hippocampus-mediated learning.Neuron199924240141410.1016/S0896‑6273(00)80853‑3 10571233
    [Google Scholar]
  73. BaydyukM. RussellT. LiaoG.Y. ZangK. AnJ.J. ReichardtL.F. XuB. TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons.Proc. Natl. Acad. Sci. USA201110841669167410.1073/pnas.1004744108 21205893
    [Google Scholar]
  74. HuangE.J. ReichardtL.F. Trk receptors: Roles in neuronal signal transduction.Annu. Rev. Biochem.200372160964210.1146/annurev.biochem.72.121801.161629 12676795
    [Google Scholar]
  75. LuB. GottschalkW. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins.Prog. Brain Res.200012823124110.1016/S0079‑6123(00)28020‑5 11105682
    [Google Scholar]
  76. BhatiV. KumarA. LatherV. SharmaR. PanditaD. Association of temozolomide with progressive multifocal leukoencephalopathy: A disproportionality analysis integrated with network pharmacology.Expert Opin. Drug Saf.202311010.1080/14740338.2023.2278682 37915230
    [Google Scholar]
  77. KrivokhizhV.N. BertashV.I. Clinical significance of leukocyte cytochemical indices in tuberculosis in childrenProbl. Tuberk.198047273 6966800
    [Google Scholar]
  78. KangH. WelcherA.A. SheltonD. SchumanE.M. Neurotrophins and time: Different roles for TrkB signaling in hippocampal long-term potentiation.Neuron199719365366410.1016/S0896‑6273(00)80378‑5 9331355
    [Google Scholar]
  79. LiuJ.H. ZhangM. WangQ. WuD.Y. JieW. HuN.Y. LanJ.Z. ZengK. LiS.J. LiX.W. YangJ.M. GaoT.M. Distinct roles of astroglia and neurons in synaptic plasticity and memory.Mol. Psychiatry202227287388510.1038/s41380‑021‑01332‑6 34642458
    [Google Scholar]
  80. XuB. ZangK. RuffN.L. ZhangY.A. McConnellS.K. StrykerM.P. ReichardtL.F. Cortical degeneration in the absence of neurotrophin signaling: Dendritic retraction and neuronal loss after removal of the receptor TrkB.Neuron200026123324510.1016/S0896‑6273(00)81153‑8 10798407
    [Google Scholar]
  81. DaftaryS.S. CalderonG. RiosM. Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala.Neuroscience201222412513410.1016/j.neuroscience.2012.08.025 22917617
    [Google Scholar]
  82. von Bohlen und Halbach, O.; von Bohlen und Halbach, V. BDNF effects on dendritic spine morphology and hippocampal function.Cell Tissue Res.2018373372974110.1007/s00441‑017‑2782‑x 29450725
    [Google Scholar]
  83. LinJ. GuoH. QinH. ZhangX. ShengJ. Integration of meta-analysis and network pharmacology analysis to investigate the pharmacological mechanisms of traditional Chinese medicine in the treatment of hepatocellular carcinoma.Front. Pharmacol.202415137498810.3389/fphar.2024.1374988 38560356
    [Google Scholar]
  84. LongH. WangC. RuanJ. ZhangM. HuangY. Gastrodin attenuates neuroinflammation in DOI‐induce Tourette syndrome in rats.J. Biochem. Mol. Toxicol.2019335e2230210.1002/jbt.22302 30790395
    [Google Scholar]
  85. ZhangW. YuW. LiuX. WangQ. BaiX. CuiX. WangS. Effect of Jian-Pi-Zhi-Dong decoction on the amino acid neurotransmitters in a rat model of tourette syndrome and comorbid anxiety disorder.Front. Psychiatry20201151510.3389/fpsyt.2020.00515 32581885
    [Google Scholar]
  86. ZhangF. LiA. Dual ameliorative effects of Ningdong granule on dopamine in rat models of Tourette’s syndrome.Sci. Rep.201551773110.1038/srep07731 25592875
    [Google Scholar]
  87. YangW. ZhangY. WuW. HuangL. GuoD. LiuC. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines.Acta Pharm. Sin. B20177443944610.1016/j.apsb.2017.04.012 28752028
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295447240430113053
Loading
/content/journals/cchts/10.2174/0113862073295447240430113053
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test