Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormone-receptor-positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073269599231009115338
2023-10-11
2025-01-13
Loading full text...

Full text loading...

References

  1. CoughlinS.S. EkwuemeD.U. Breast cancer as a global health concern.Cancer Epidemiol.200933531531810.1016/j.canep.2009.10.00319896917
    [Google Scholar]
  2. HelmrichS.P. ShapiroS. RosenbergL. KaufmanD.W. SloneD. BainC. MiettinenO.S. StolleyP.D. RosensheinN.B. KnappR.C. LeavittT.Jr SchottenfeldD. EngleR.L.Jr LevyM. Risk factors for breast cancer.Am. J. Epidemiol.19831171354510.1093/oxfordjournals.aje.a1135136823951
    [Google Scholar]
  3. LiY. LiS. MengX. GanR.Y. ZhangJ.J. LiH.B. Dietary natural products for prevention and treatment of breast cancer.Nutrients20179772810.3390/nu907072828698459
    [Google Scholar]
  4. DoyleL.A. YangW. AbruzzoL.V. KrogmannT. GaoY. RishiA.K. RossD.D. A multidrug resistance transporter from human MCF-7 breast cancer cells.Proc. Natl. Acad. Sci. USA19989526156651567010.1073/pnas.95.26.156659861027
    [Google Scholar]
  5. UllahM.F. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy.Asian Pac. J. Cancer Prev.2008911618439063
    [Google Scholar]
  6. BursteinH.J. GelberS. GuadagnoliE. WeeksJ.C. Use of alternative medicine by women with early-stage breast cancer.N. Engl. J. Med.1999340221733173910.1056/NEJM19990603340220610352166
    [Google Scholar]
  7. HendersonJ.W. DonatelleR.J. Complementary and alternative medicine use by women after completion of allopathic treatment for breast cancer.Altern. Ther. Health Med.2004101525714727500
    [Google Scholar]
  8. AdlerS.R. FosketJ.R. Disclosing complementary and alternative medicine use in the medical encounter: a qualitative study in women with breast cancer.J. Fam. Pract.199948645345810386489
    [Google Scholar]
  9. BoonH.S. OlatundeF. ZickS.M. Trends in complementary/alternative medicine use by breast cancer survivors: Comparing survey data from 1998 and 2005.BMC Womens Health200771410.1186/1472‑6874‑7‑417397542
    [Google Scholar]
  10. MacMahonB. ColeP. BrownJ. Etiology of human breast cancer: a review.J. Natl. Cancer Inst.1973501214210.1093/jnci/50.1.214571238
    [Google Scholar]
  11. MillerA.B. BulbrookR.D. The epidemiology and etiology of breast cancer.N. Engl. J. Med.1980303211246124810.1056/NEJM1980112030321307421960
    [Google Scholar]
  12. PikeM.C. SpicerD.V. DahmoushL. PressM.F. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk.Epidemiol. Rev.1993151173010.1093/oxfordjournals.epirev.a0361028405201
    [Google Scholar]
  13. YamaneK. TateishiK. KloseR.J. FangJ. FabrizioL.A. Erdjument-BromageH. Taylor-PapadimitriouJ. TempstP. ZhangY. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation.Mol. Cell200725680181210.1016/j.molcel.2007.03.00117363312
    [Google Scholar]
  14. CheangM.C.U. VoducD. BajdikC. LeungS. McKinneyS. ChiaS.K. PerouC.M. NielsenT.O. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype.Clin. Cancer Res.20081451368137610.1158/1078‑0432.CCR‑07‑165818316557
    [Google Scholar]
  15. ShoebM. Anti-cancer agents from medicinal plants.Bangladesh J. Pharmacol.2006123541
    [Google Scholar]
  16. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  17. BrueggemeierR.W. RichardsJ.A. PetrelT.A. Aromatase and cyclooxygenases: enzymes in breast cancer.J. Steroid Biochem. Mol. Biol.2003863-550150710.1016/S0960‑0760(03)00380‑714623550
    [Google Scholar]
  18. BalunasM.J. KinghornA.D. Drug discovery from medicinal plants.Life Sci.200578543144110.1016/j.lfs.2005.09.01216198377
    [Google Scholar]
  19. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.01116009521
    [Google Scholar]
  20. BurnsJ. YokotaT. AshiharaH. LeanM.E.J. CrozierA. Plant foods and herbal sources of resveratrol.J. Agric. Food Chem.200250113337334010.1021/jf011297312010007
    [Google Scholar]
  21. MansD.R.A. RochaA.B. SchwartsmannG. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds.Oncologist20005318519810.1634/theoncologist.5‑3‑18510884497
    [Google Scholar]
  22. SomasundaramS. EdmundN.A. MooreD.T. SmallG.W. ShiY.Y. OrlowskiR.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer.Cancer Res.200262133868387512097302
    [Google Scholar]
  23. SakK. Chemotherapy and dietary phytochemical agents.Chemother Res Pract.2012201228257010.1155/2012/282570
    [Google Scholar]
  24. NaginiS. Breast cancer: Current molecular therapeutic targets and new players.Anticancer Agents Med Chem.201717215216310.2174/1871520616666160502122724
    [Google Scholar]
  25. PerouCM SørlieT EisenMB Van De RijnM JeffreySS ReesCA PollackJR RossDT JohnsenH AkslenLA FlugeØ Molecular portraits of human breast tumours.Nature.20004066797747752
    [Google Scholar]
  26. SørlieT. PerouC.M. TibshiraniR. AasT. GeislerS. JohnsenH. HastieT. EisenM.B. van de RijnM. JeffreyS.S. ThorsenT. QuistH. MateseJ.C. BrownP.O. BotsteinD. LønningP.E. Børresen-DaleA.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc. Natl. Acad. Sci. USA20019819108691087410.1073/pnas.19136709811553815
    [Google Scholar]
  27. PratA. ParkerJ.S. KarginovaO. FanC. LivasyC. HerschkowitzJ.I. HeX. PerouC.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer.Breast Cancer Res.2010125R6810.1186/bcr263520813035
    [Google Scholar]
  28. HerschkowitzJ.I. SiminK. WeigmanV.J. MikaelianI. UsaryJ. HuZ. RasmussenK.E. JonesL.P. AssefniaS. ChandrasekharanS. BacklundM.G. YinY. KhramtsovA.I. BasteinR. QuackenbushJ. GlazerR.I. BrownP.H. GreenJ.E. KopelovichL. FurthP.A. PalazzoJ.P. OlopadeO.I. BernardP.S. ChurchillG.A. Van DykeT. PerouC.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.Genome Biol.200785R7610.1186/gb‑2007‑8‑5‑r7617493263
    [Google Scholar]
  29. LehmannB.D. BauerJ.A. ChenX. SandersM.E. ChakravarthyA.B. ShyrY. PietenpolJ.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.J. Clin. Invest.201112172750276710.1172/JCI4501421633166
    [Google Scholar]
  30. MitraS. MicroRNA therapeutics in triple negative breast cancer.Arch. Pathol. Clin. Res.20171100901710.29328/journal.hjpcr.1001003
    [Google Scholar]
  31. HortobagyiG.N. Treatment of breast cancer.N. Engl. J. Med.19983391497498410.1056/NEJM1998100133914079753714
    [Google Scholar]
  32. MaughanK.L. LutterbieM.A. HamP.S. Treatment of breast cancer.Am. Fam. Physician201081111339134620521754
    [Google Scholar]
  33. PierceSM RechtA LingosTI AbnerA ViciniF SilverB HerzogA HarrisJR Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer.Int. J. Radiat. Oncol. Biol. Phys.1992235915923
    [Google Scholar]
  34. GottesmanM.M. FojoT. BatesS.E. Multidrug resistance in cancer: role of ATP–dependent transporters.Nat. Rev. Cancer200221485810.1038/nrc70611902585
    [Google Scholar]
  35. SaunaZ.E. SmithM.M. MüllerM. KerrK.M. AmbudkarS.V. The mechanism of action of multidrug-resistance-linked P-glycoprotein.J. Bioenerg. Biomembr.200133648149110.1023/A:101287510500611804190
    [Google Scholar]
  36. RiveraE. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options.Breast J.201016325226310.1111/j.1524‑4741.2009.00896.x20408828
    [Google Scholar]
  37. KönigJ. HartelM. NiesA.T. MartignoniM.E. GuoJ. BüchlerM.W. FriessH. KepplerD. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma.Int. J. Cancer2005115335936710.1002/ijc.2083115688370
    [Google Scholar]
  38. FumoleauP. LargillierR. ClippeC. DièrasV. OrfeuvreH. LesimpleT. CulineS. AudhuyB. SerinD. CuréH. VuilleminE. MorèreJ.F. MontestrucF. MouriZ. NamerM. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer.Eur. J. Cancer200440453654210.1016/j.ejca.2003.11.00714962720
    [Google Scholar]
  39. JiangX. ZhaoY. SmithC. GasparettoM. TurhanA. EavesA. EavesC. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies.Leukemia200721592693510.1038/sj.leu.240460917330101
    [Google Scholar]
  40. LoveR.R. LeventhalH. EasterlingD.V. NerenzD.R. Side effects and emotional distress during cancer chemotherapy.Cancer198963360461210.1002/1097‑0142(19890201)63:3<604::AID‑CNCR2820630334>3.0.CO;2‑22912536
    [Google Scholar]
  41. SaldanhaS.N. TollefsbolT.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes.J. Oncol.2012201212310.1155/2012/19246422187555
    [Google Scholar]
  42. LiaoG.S. ApayaM.K. ShyurL.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy.Evid. Based Complement. Alternat. Med.2013201311710.1155/2013/43794823840256
    [Google Scholar]
  43. ZhengJ. ZhouY. LiY. XuD.P. LiS. LiH.B. Spices for prevention and treatment of cancers.Nutrients20168849510.3390/nu808049527529277
    [Google Scholar]
  44. LiF. LiS. LiH.B. DengG.F. LingW.H. XuX.R. Antiproliferative activities of tea and herbal infusions.Food Funct.20134453053810.1039/c2fo30252g23307138
    [Google Scholar]
  45. DucasseM. BrownM.A. Epigenetic aberrations and cancer.Mol. Cancer2006516010.1186/1476‑4598‑5‑6017092350
    [Google Scholar]
  46. JonesP.A. BaylinS.B. The epigenomics of cancer.Cell2007128468369210.1016/j.cell.2007.01.02917320506
    [Google Scholar]
  47. StearnsV. ZhouQ. DavidsonN.E. Epigenetic regulation as a new target for breast cancer therapy.Cancer Invest.200725865966510.1080/0735790070171923418058459
    [Google Scholar]
  48. LustbergM.B. RamaswamyB. Epigenetic targeting in breast cancer: therapeutic impact and future direction.Drug News Perspect.200922736938110.1358/dnp.2009.22.7.140507219890494
    [Google Scholar]
  49. BasseC. ArockM. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment.Int. J. Cancer2015137122785279410.1002/ijc.2934725410431
    [Google Scholar]
  50. ThakurV.S. DebG. BabcookM.A. GuptaS. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention.AAPS J.201416115116310.1208/s12248‑013‑9548‑524307610
    [Google Scholar]
  51. KhanS.I. AumsuwanP. KhanI.A. WalkerL.A. DasmahapatraA.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome.Chem. Res. Toxicol.2012251617310.1021/tx200378c21992498
    [Google Scholar]
  52. Landis-PiwowarK.R. MilacicV. DouQ.P. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells.J. Cell. Biochem.2008105251452310.1002/jcb.2185318636546
    [Google Scholar]
  53. AggarwalR. JhaM. ShrivastavaA. JhaA.K. Natural compounds: Role in reversal of epigenetic changes.Biochemistry (Mosc.)201580897298910.1134/S000629791508002726547065
    [Google Scholar]
  54. ChlebowskiR.T. Current concepts in breast cancer chemoprevention.Pol. Arch. Med. Wewn.2014124419119924618912
    [Google Scholar]
  55. KoE.Y. MoonA. Natural products for chemoprevention of breast cancer.J. Cancer Prev.201520422323110.15430/JCP.2015.20.4.22326734584
    [Google Scholar]
  56. MaggioliniM. BonofiglioD. PezziV. CarpinoA. MarsicoS. RagoV. VivacquaA. PicardD. AndòS. Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells.Mol. Cell. Endocrinol.20021931-2131810.1016/S0303‑7207(02)00091‑612160997
    [Google Scholar]
  57. LephartED Modulation of aromatase by phytoestrogens.Enzyme Res.2015201559465610.1155/2015/594656
    [Google Scholar]
  58. YarlaNS BishayeeA SethiG ReddannaP KalleAM DhananjayaBL DowluruKS ChintalaR DuddukuriGR Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.Semin Cancer Biol201640488110.1016/j.semcancer.2016.02.001
    [Google Scholar]
  59. WangD. DuBoisR.N. Eicosanoids and cancer.Nat. Rev. Cancer201010318119310.1038/nrc280920168319
    [Google Scholar]
  60. CuendetM. PezzutoM. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention.Drug Metabol. Drug Interact.2000171-410915710.1515/DMDI.2000.17.1‑4.10911201293
    [Google Scholar]
  61. DenkertC. WinzerK.J. MüllerB.M. WeichertW. PestS. KöbelM. KristiansenG. RelesA. SiegertA. GuskiH. HauptmannS. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma.Cancer200397122978298710.1002/cncr.1143712784332
    [Google Scholar]
  62. RangerG.S. ThomasV. JewellA. MokbelK. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer.Anticancer Res.20042442349235115330183
    [Google Scholar]
  63. StasinopoulosI. O’BrienD.R. WildesF. GlundeK. BhujwallaZ.M. Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells.Mol. Cancer Res.20075543544210.1158/1541‑7786.MCR‑07‑001017510310
    [Google Scholar]
  64. BorinT. AngaraK. RashidM. AchyutB. ArbabA. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis.Int. J. Mol. Sci.20171812266110.3390/ijms1812266129292756
    [Google Scholar]
  65. ChumsriS. HowesT. BaoT. SabnisG. BrodieA. Aromatase, aromatase inhibitors, and breast cancer.J. Steroid Biochem. Mol. Biol.20111251-2132210.1016/j.jsbmb.2011.02.00121335088
    [Google Scholar]
  66. SunS.Y. HailN.Jr LotanR. Apoptosis as a novel target for cancer chemoprevention.J. Natl. Cancer Inst.200496966267210.1093/jnci/djh12315126603
    [Google Scholar]
  67. JohnstoneR.W. RuefliA.A. LoweS.W. Apoptosis.Cell2002108215316410.1016/S0092‑8674(02)00625‑611832206
    [Google Scholar]
  68. LiuJ. LinM. YuJ. LiuB. BaoJ. Targeting apoptotic and autophagic pathways for cancer therapeutics.Cancer Lett.2011300210511410.1016/j.canlet.2010.10.00121036469
    [Google Scholar]
  69. ThomasL.R. HensonA. ReedJ.C. SalsburyF.R. ThorburnA. Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD.J. Biol. Chem.200427931327803278510.1074/jbc.M40168020015173180
    [Google Scholar]
  70. HarperN. HughesM. MacFarlaneM. CohenG.M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis.J. Biol. Chem.200327828255342554110.1074/jbc.M30339920012721308
    [Google Scholar]
  71. GuicciardiM.E. GoresG.J. Life and death by death receptors.FASEB J.20092361625163710.1096/fj.08‑11100519141537
    [Google Scholar]
  72. WajantH. Death receptors.Essays Biochem.200339537110.1042/bse039005314585074
    [Google Scholar]
  73. GreenD.R. Apoptotic Pathways.Cell200010211410.1016/S0092‑8674(00)00003‑910929706
    [Google Scholar]
  74. KangM.H. ReynoldsC.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy.Clin. Cancer Res.20091541126113210.1158/1078‑0432.CCR‑08‑014419228717
    [Google Scholar]
  75. ToshiyaK. TestuyaT. AkiraH. TakujiT. Cancer chemoprevention through the induction of apoptosis by natural compounds.J. Biophys. Chem.201232156173
    [Google Scholar]
  76. RothW. ReedJ.C. Apoptosis and cancer: When BAX is TRAILing away.Nat. Med.20028321621810.1038/nm0302‑21611875486
    [Google Scholar]
  77. Dall’AcquaS. Natural products as antimitotic agents.Curr. Top. Med. Chem.201414202272228510.2174/156802661466614113009531125434355
    [Google Scholar]
  78. LiuH. ChenX. SunJ. GaoP. SongY. ZhangN. LuX. XuH. WangZ. The efficacy and toxicity of paclitaxel plus S-1 compared with paclitaxel plus 5-FU for advanced gastric cancer: a PRISMA systematic review and meta-analysis of randomized controlled trials.Medicine (Baltimore)20149325e16410.1097/MD.000000000000016425437030
    [Google Scholar]
  79. WangY. Man GhoW. ChanF.L. ChenS. LeungL.K. The red clover ( Trifolium pratense ) isoflavone biochanin A inhibits aromatase activity and expression.Br. J. Nutr.200899230331010.1017/S000711450781197417761019
    [Google Scholar]
  80. SehdevV. LaiJ.C.K. BhushanA. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells.J. Oncol.2009200911010.1155/2009/12145820169097
    [Google Scholar]
  81. AtwellL.L. ZhangZ. MoriM. FarrisP.E. VettoJ.T. NaikA.M. OhK.Y. ThuillierP. HoE. ShannonJ. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy.Cancer Prev. Res. (Phila.)20158121184119110.1158/1940‑6207.CAPR‑15‑011926511489
    [Google Scholar]
  82. MoonY.J. BrazeauD.A. MorrisM.E. Effects of flavonoids genistein and biochanin a on gene expression and their metabolism in human mammary cells.Nutr. Cancer2007571485810.1080/0163558070126819617516862
    [Google Scholar]
  83. MoonY.J. ShinB.S. AnG. MorrisM.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model.Pharm. Res.20082592158216310.1007/s11095‑008‑9583‑618454305
    [Google Scholar]
  84. GuoQ. ZhaoB. LiM. ShenS. XinW. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes.Biochim. Biophys. Acta Lipids Lipid Metab.19961304321022210.1016/S0005‑2760(96)00122‑18982267
    [Google Scholar]
  85. BernerC. AumüllerE. GnauckA. NestelbergerM. JustA. HaslbergerA.G. Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds.Ann. Nutr. Metab.2010573-418318910.1159/00032151421088384
    [Google Scholar]
  86. NandakumarV. VaidM. KatiyarS.K. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells.Carcinogenesis201132453754410.1093/carcin/bgq28521209038
    [Google Scholar]
  87. LiY. YuanY.Y. MeeranS.M. TollefsbolT.O. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells.Mol. Cancer20109127410.1186/1476‑4598‑9‑27431901224
    [Google Scholar]
  88. DebG. ThakurV.S. LimayeA.M. GuptaS. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells.Mol. Carcinog.201554648549910.1002/mc.2212124481780
    [Google Scholar]
  89. GoodinM.G. FertuckK.C. ZacharewskiT.R. RosengrenR.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro.Toxicol. Sci.200269235436110.1093/toxsci/69.2.35412377984
    [Google Scholar]
  90. WangP. HenningS.M. HeberD. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols.PLoS One201054e1020210.1371/journal.pone.001020220419137
    [Google Scholar]
  91. HanS.G. HanS.S. ToborekM. HennigB. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes.Toxicol. Appl. Pharmacol.2012261218118810.1016/j.taap.2012.03.02422521609
    [Google Scholar]
  92. RoyA.M. BaligaM.S. KatiyarS.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation.Mol. Cancer Ther.200541819010.1158/1535‑7163.81.4.115657356
    [Google Scholar]
  93. HsuY.C. LiouY.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells.J. Cell. Physiol.2011226102721273010.1002/jcp.2262321792929
    [Google Scholar]
  94. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.610828693189
    [Google Scholar]
  95. BakerK.M. BauerA.C. Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells.Int. J. Breast Cancer201520151710.1155/2015/16359126783468
    [Google Scholar]
  96. ChisholmK. BrayB.J. RosengrenR.J. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells.Anticancer Drugs200415988989710.1097/00001813‑200410000‑0001015457130
    [Google Scholar]
  97. FarabegoliF. PapiA. OrlandiM. (–)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells.Biosci. Rep.20113129910810.1042/BSR2009014320446926
    [Google Scholar]
  98. MasudaM. SuzuiM. LimJ.T.E. DeguchiA. SohJ.W. WeinsteinI.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction.J. Exp. Ther. Oncol.20022635035910.1046/j.1359‑4117.2002.01062.x12440226
    [Google Scholar]
  99. IslamS. IslamN. KermodeT. JohnstoneB. MukhtarH. MoskowitzR.W. GoldbergV.M. MalemudC.J. HaqqiT.M. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells.Biochem. Biophys. Res. Commun.2000270379379710.1006/bbrc.2000.253610772904
    [Google Scholar]
  100. LiM.J. YinY.C. WangJ. JiangY.F. Green tea compounds in breast cancer prevention and treatment.World J. Clin. Oncol.20145352052810.5306/wjco.v5.i3.52025114865
    [Google Scholar]
  101. PengG DixonDA MugaSJ SmithTJ WargovichMJ Green tea polyphenol (−)‐epigallocatechin‐3‐gallate inhibits cyclooxygenase‐2 expression in colon carcinogenesis.Mol Carcinog2006455309319
    [Google Scholar]
  102. ChunKS SurhYJ Cancer chemoprevention targeting COX-2 using dietary phytochemicals.Cancer and Inflammation Mechanisms: Chemical, Biological, and Clinical AspectsWiley2014
    [Google Scholar]
  103. SartippourM.R. PietrasR. Marquez-GarbanD.C. ChenH.W. HeberD. HenningS.M. SartippourG. ZhangL. LuM. WeinbergO. RaoJ.Y. BrooksM.N. The combination of green tea and tamoxifen is effective against breast cancer.Carcinogenesis200627122424243310.1093/carcin/bgl06616785249
    [Google Scholar]
  104. ZhangG. WangY. ZhangY. WanX. LiJ. LiuK. WangF. LiuQ. YangC. YuP. HuangY. WangS. JiangP. QuZ. LuanJ. DuanH. ZhangL. HouA. JinS. HsiehT-C. WuE. WuE. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy.Curr. Mol. Med.201212216317610.2174/15665241279888906322280355
    [Google Scholar]
  105. AlcarazM. ArmeroD. Martínez-BeneytoY. CastilloJ. Benavente-GarcíaO. FernandezH. Alcaraz-SauraM. CanterasM. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels.Dentomaxillofac. Radiol.201140531031410.1259/dmfr/9540835421697157
    [Google Scholar]
  106. UllmannU. HallerJ. DecourtJ.P. GiraultN. GiraultJ. Richard-CaudronA.S. PineauB. WeberP. A single ascending dose study of epigallocatechin gallate in healthy volunteers.J. Int. Med. Res.20033128810110.1177/14732300030310020512760312
    [Google Scholar]
  107. StearnsM.E. AmatangeloM.D. VarmaD. SellC. GoodyearS.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice.Am. J. Pathol.201017763169317910.2353/ajpath.2010.10033020971741
    [Google Scholar]
  108. DashR. JunaidM. IslamN. AkashM.F.C. KhanM.I. ArifuzzamanM. KhatunM. Zahid HosenS.M. M Zahid Hosen S. Molecular insight and binding pattern analysis of Shikonin as a potential VEGFR-2 inhibitor.Curr. Enzym. Inhib.201713323524410.2174/1573408013666161227162452
    [Google Scholar]
  109. YaoY. ZhouQ. A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells.Breast Cancer Res. Treat.2010121123324010.1007/s10549‑009‑0547‑219760501
    [Google Scholar]
  110. YaoY. BrodieA.M.H. DavidsonN.E. KenslerT.W. ZhouQ. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer.Breast Cancer Res. Treat.2010124258559110.1007/s10549‑010‑1023‑820623181
    [Google Scholar]
  111. HanW. LiL. QiuS. LuQ. PanQ. GuY. LuoJ. HuX. Shikonin circumvents cancer drug resistance by induction of a necroptotic death.Mol. Cancer Ther.2007651641164910.1158/1535‑7163.MCT‑06‑051117513612
    [Google Scholar]
  112. ZhangY. QianR.Q. LiP.P. Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells.Cancer Lett.20092841475410.1016/j.canlet.2009.04.00819419812
    [Google Scholar]
  113. DuruN. GernapudiR. ZhouQ. Chemopreventive activities of shikonin in breast cancer.Biochem. Pharmacol.20143e163
    [Google Scholar]
  114. JangS.Y. LeeJ.K. JangE.H. JeongS.Y. KimJ.H. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation.Oncol. Rep.20143162827283310.3892/or.2014.315924789371
    [Google Scholar]
  115. WangW. DaiM. ZhuC. ZhangJ. LinL. DingJ. DuanW. Synthesis and biological activity of novel shikonin analogues.Bioorg. Med. Chem. Lett.200919373573710.1016/j.bmcl.2008.12.03219111464
    [Google Scholar]
  116. LiW. LiuJ. JacksonK. ShiR. ZhaoY. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells.PLoS One201494e9407910.1371/journal.pone.009407924710512
    [Google Scholar]
  117. ZhangC.H. WangJ. ZhangL.X. LuY.H. JiT.H. XuL. LingL.J. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57.Oncotarget2017851886588866910.18632/oncotarget.2080929179465
    [Google Scholar]
  118. SuL. LiuL. WangY. YanG. ZhangY. Long-term systemic toxicity of shikonin derivatives in Wistar rats.Pharm. Biol.201452448649010.3109/13880209.2013.84691324192282
    [Google Scholar]
  119. AssimopoulouA.N. PapageorgiouV.P. Encapsulation of isohexenylnaphthazarins in cyclodextrins.Biomed. Chromatogr.200418424024710.1002/bmc.31015162386
    [Google Scholar]
  120. HolzerT.R. McMasterW.R. ForneyJ.D. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana.Mol. Biochem. Parasitol.2006146219821810.1016/j.molbiopara.2005.12.00916430978
    [Google Scholar]
  121. King-BatoonA. LeszczynskaJ.M. KleinC.B. Modulation of gene methylation by genistein or lycopene in breast cancer cells.Environ. Mol. Mutagen.2008491364510.1002/em.2036318181168
    [Google Scholar]
  122. BishopK. FergusonL. The interaction between epigenetics, nutrition and the development of cancer.Nutrients20157292294710.3390/nu702092225647662
    [Google Scholar]
  123. TakeshimaM. OnoM. HiguchiT. ChenC. HaraT. NakanoS. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines.Cancer Sci.2014105325225710.1111/cas.1234924397737
    [Google Scholar]
  124. PengS.J. LiJ. ZhouY. TuoM. QinX.X. YuQ. ChengH. LiY.M. in vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.Genet. Mol. Res.20171621310.4238/gmr1602943428407181
    [Google Scholar]
  125. ZhangX. SpiegelmanD. BagliettoL. BernsteinL. BoggsD.A. van den BrandtP.A. BuringJ.E. GapsturS.M. GilesG.G. GiovannucciE. GoodmanG. HankinsonS.E. HelzlsouerK.J. Horn-RossP.L. InoueM. JungS. KhudyakovP. LarssonS.C. LofM. McCulloughM.L. MillerA.B. NeuhouserM.L. PalmerJ.R. ParkY. RobienK. RohanT.E. RossJ.A. SchoutenL.J. ShikanyJ.M. TsuganeS. VisvanathanK. WeiderpassE. WolkA. WillettW.C. ZhangS.M. ZieglerR.G. Smith-WarnerS.A. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies.Am. J. Clin. Nutr.201295371372510.3945/ajcn.111.01441522277553
    [Google Scholar]
  126. EliassenA.H. HendricksonS.J. BrintonL.A. BuringJ.E. CamposH. DaiQ. DorganJ.F. FrankeA.A. GaoY. GoodmanM.T. HallmansG. HelzlsouerK.J. Hoffman-BoltonJ. HulténK. SessoH.D. SowellA.L. TamimiR.M. TonioloP. WilkensL.R. WinkvistA. Zeleniuch-JacquotteA. ZhengW. HankinsonS.E. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies.J. Natl. Cancer Inst.2012104241905191610.1093/jnci/djs46123221879
    [Google Scholar]
  127. RaoA.V. ShenH. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress.Nutr. Res.200222101125113110.1016/S0271‑5317(02)00430‑X
    [Google Scholar]
  128. BasuA. ImrhanV. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials.Eur. J. Clin. Nutr.200761329530310.1038/sj.ejcn.160251016929242
    [Google Scholar]
  129. AtharM. BackJ.H. KopelovichL. BickersD.R. KimA.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms.Arch. Biochem. Biophys.200948629510210.1016/j.abb.2009.01.01819514131
    [Google Scholar]
  130. SavouretJ.F. QuesneM. Resveratrol and cancer: a review.Biomed. Pharmacother.2002562848710.1016/S0753‑3322(01)00158‑512000139
    [Google Scholar]
  131. QinW. ZhangK. ClarkeK. WeilandT. SauterE.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue.Nutr. Cancer201466227027710.1080/01635581.2014.86891024447120
    [Google Scholar]
  132. BishayeeA. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials.Cancer Prev. Res. (Phila.)20092540941810.1158/1940‑6207.CAPR‑08‑016019401532
    [Google Scholar]
  133. WangR.H. SenguptaK. LiC. KimH.S. CaoL. XiaoC. KimS. XuX. ZhengY. ChiltonB. JiaR. ZhengZ.M. AppellaE. WangX.W. RiedT. DengC.X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice.Cancer Cell200814431232310.1016/j.ccr.2008.09.00118835033
    [Google Scholar]
  134. StefanskaB. KarlicH. VargaF. Fabianowska-MajewskaK. HaslbergerA.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention.Br. J. Pharmacol.2012167227929710.1111/j.1476‑5381.2012.02002.x22536923
    [Google Scholar]
  135. SinhaD SarkarN BiswasJ BishayeeA Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms.Semin Cancer Biol201640209232
    [Google Scholar]
  136. HsiehT. WuJ.M. Resveratrol: Biological and pharmaceutical properties as anticancer molecule.Biofactors201036536036910.1002/biof.10520623546
    [Google Scholar]
  137. JenkinsS. BetancourtA.M. WangJ. LamartiniereC.A. Endocrine-active chemicals in mammary cancer causation and prevention.J. Steroid Biochem. Mol. Biol.20121293-519120010.1016/j.jsbmb.2011.06.00321729753
    [Google Scholar]
  138. ParkM.A. HwangK.A. ChoiK.C. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property?Lab. Anim. Res.201127426527310.5625/lar.2011.27.4.26522232634
    [Google Scholar]
  139. BhatK.P. LantvitD. ChristovK. MehtaR.G. MoonR.C. PezzutoJ.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models.Cancer Res.200161207456746311606380
    [Google Scholar]
  140. ChowH.H.S. GarlandL.L. Heckman-StoddardB.M. HsuC.H. ButlerV.D. CordovaC.A. ChewW.M. CornelisonT.L. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones.J. Transl. Med.201412122310.1186/s12967‑014‑0223‑025115686
    [Google Scholar]
  141. LauxM.T. AregullinM. BerryJ.P. FlandersJ.A. RodriguezE. Identification of a p53-dependent pathway in the induction of apoptosis of human breast cancer cells by the natural product, resveratrol.J. Altern. Complement. Med.200410223523910.1089/10755530432306221115165403
    [Google Scholar]
  142. KimH. HallP. SmithM. KirkM. PrasainJ.K. BarnesS. GrubbsC. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent.J. Nutr.200413412Suppl.3445S3452S10.1093/jn/134.12.3445S15570052
    [Google Scholar]
  143. Pozo-GuisadoE. MerinoJ.M. Mulero-NavarroS. Lorenzo-BenayasM.J. CentenoF. Alvarez-BarrientosA. SalgueroP.M.F. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-?B.Int. J. Cancer20051151748410.1002/ijc.2085615688415
    [Google Scholar]
  144. KothaA. SekharamM. CilentiL. SiddiqueeK. KhaledA. ZervosA.S. CarterB. TurksonJ. JoveR. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein.Mol. Cancer Ther.20065362162910.1158/1535‑7163.MCT‑05‑026816546976
    [Google Scholar]
  145. FuldaS. DebatinK.M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol.Cancer Res.200464133734610.1158/0008‑5472.CAN‑03‑165614729643
    [Google Scholar]
  146. de VriesK. StrydomM. SteenkampV. Bioavailability of resveratrol: Possibilities for enhancement.J. Herb. Med.201811717710.1016/j.hermed.2017.09.002
    [Google Scholar]
  147. BermanA.Y. MotechinR.A. WiesenfeldM.Y. HolzM.K. The therapeutic potential of resveratrol: a review of clinical trials.NPJ Precis. Oncol.2017113510.1038/s41698‑017‑0038‑628989978
    [Google Scholar]
  148. SarkarF.H. LiY. Soy isoflavones and cancer prevention.Cancer Invest.200321574475710.1081/CNV‑12002377314628433
    [Google Scholar]
  149. BanerjeeS. LiY. WangZ. SarkarF.H. Multi-targeted therapy of cancer by genistein.Cancer Lett.2008269222624210.1016/j.canlet.2008.03.05218492603
    [Google Scholar]
  150. MessingE. GeeJ.R. SaltzsteinD.R. KimK. diSant’AgneseA. KolesarJ. HarrisL. FaerberA. HavighurstT. YoungJ.M. EfrosM. GetzenbergR.H. WheelerM.A. TangreaJ. ParnesH. HouseM. BusbyJ.E. HohlR. BaileyH. A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients.Cancer Prev. Res. (Phila.)20125462163010.1158/1940‑6207.CAPR‑11‑045522293631
    [Google Scholar]
  151. DharmappaK.K. MohamedR. ShivaprasadH.V. VishwanathB.S. Genistein, a potent inhibitor of secretory phospholipase A2: a new insight in down regulation of inflammation.Inflammopharmacology2010181253110.1007/s10787‑009‑0018‑819894024
    [Google Scholar]
  152. LauT.Y. LeungL.K. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells.Br. J. Nutr.200696116917610.1079/BJN2006163916870006
    [Google Scholar]
  153. ChungM.H. KimD.H. NaH.K. KimJ.H. KimH.N. HaegemanG. SurhY.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells.Mutat. Res.2014768748310.1016/j.mrfmmm.2014.04.00324742714
    [Google Scholar]
  154. PonsD.G. Nadal-SerranoM. Blanquer-RosselloM.M. Sastre-SerraJ. OliverJ. RocaP. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio.J. Cell. Biochem.2014115594995810.1002/jcb.2473724375531
    [Google Scholar]
  155. KucukO. Soy foods, isoflavones, and breast cancer.Cancer2017123111901190310.1002/cncr.3061428263364
    [Google Scholar]
  156. BoukerK.B. Hilakivi-ClarkeL. Genistein: does it prevent or promote breast cancer?Environ. Health Perspect.2000108870170810.1289/ehp.0010870110964789
    [Google Scholar]
  157. ZhangF.F. HaslamD.E. TerryM.B. KnightJ.A. AndrulisI.L. DalyM.B. BuysS.S. JohnE.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry.Cancer2017123112070207910.1002/cncr.3061528263368
    [Google Scholar]
  158. ChenW.F. HuangM.H. TzangC.H. YangM. WongM.S. Inhibitory actions of genistein in human breast cancer (MCF-7) cells.Biochim. Biophys. Acta Mol. Basis Dis.20031638218719610.1016/S0925‑4439(03)00082‑6
    [Google Scholar]
  159. LiY. UpadhyayS. BhuiyanM. SarkarF.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein.Oncogene199918203166317210.1038/sj.onc.120265010340389
    [Google Scholar]
  160. YangS. ZhouQ. YangX. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells.Biochim. Biophys. Acta Mol. Cell Res.20071773690391110.1016/j.bbamcr.2007.03.02117490757
    [Google Scholar]
  161. ShimH.Y. ParkJ.H. PaikH.D. NahS.Y. KimD.S.H.L. HanY.S. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades.Anticancer Drugs200718664965710.1097/CAD.0b013e328082557317762393
    [Google Scholar]
  162. SergeevI.N. Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells.Biochem. Biophys. Res. Commun.2004321246246710.1016/j.bbrc.2004.06.17315358198
    [Google Scholar]
  163. ChenJ. DuanY. ZhangX. YeY. GeB. ChenJ. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells.Food Funct.201563995100010.1039/C4FO01141D25675448
    [Google Scholar]
  164. LiuX. SunC. JinX. LiP. YeF. ZhaoT. GongL. LiQ. Genistein enhances the radiosensitivity of breast cancer cells via G₂/M cell cycle arrest and apoptosis.Molecules20131811132001321710.3390/molecules18111320024284485
    [Google Scholar]
  165. LiY. ChenH. HardyT.M. TollefsbolT.O. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.PLoS One201381e5436910.1371/journal.pone.005436923342141
    [Google Scholar]
  166. LiY. MeeranS.M. PatelS.N. ChenH. HardyT.M. TollefsbolT.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer.Mol. Cancer2013121910.1186/1476‑4598‑12‑924063558
    [Google Scholar]
  167. XieQ. BaiQ. ZouL.Y. ZhangQ.Y. ZhouY. ChangH. YiL. ZhuJ.D. MiM.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells.Genes Chromosomes Cancer201453542243110.1002/gcc.2215424532317
    [Google Scholar]
  168. Vissac-SabatierC. BignonY.J. Bernard-GallonD.J. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines.Nutr. Cancer200345224725510.1207/S15327914NC4502_1512881020
    [Google Scholar]
  169. TominagaY. WangA. WangR-H. WangX. CaoL. DengC-X. Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe.Cell Death Differ.200714347247910.1038/sj.cdd.440203717024228
    [Google Scholar]
  170. YangZ KulkarniK ZhuW HuM Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME.Anticancer Agents Med. Chem.201212101264128010.2174/187152012803833107
    [Google Scholar]
  171. LuY. LiW. YangX. Soybean soluble polysaccharide enhances absorption of soybean genistein in mice.Food Res. Int.201810327327910.1016/j.foodres.2017.10.05429389615
    [Google Scholar]
  172. WangY. YuJ. CuiR. LinJ. DingX. Curcumin in treating breast cancer: A review.SLAS Technol.201621672373110.1177/221106821665552427325106
    [Google Scholar]
  173. ChoudhuriT. PalS. AgwarwalM.L. DasT. SaG. Curcumin induces apoptosis in human breast cancer cells through p53‐dependent Bax induction.FEBS Lett.20025121-333434010.1016/S0014‑5793(02)02292‑511852106
    [Google Scholar]
  174. LiuQ. LooW.T.Y. SzeS.C.W. TongY. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription.Phytomedicine2009161091692210.1016/j.phymed.2009.04.00819524420
    [Google Scholar]
  175. ZongH. WangF. FanQ. WangL. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways.Mol. Biol. Rep.20123944803480810.1007/s11033‑011‑1273‑521947854
    [Google Scholar]
  176. BachmeierB.E. MohrenzI.V. MirisolaV. SchleicherE. RomeoF. HöhnekeC. JochumM. NerlichA.G. PfefferU. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB.Carcinogenesis200829477978910.1093/carcin/bgm24817999991
    [Google Scholar]
  177. LinM.T. ChangC.C. ChenS.T. ChangH.L. SuJ.L. ChauY.P. KuoM.L. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation.J. Biol. Chem.200427923240152402310.1074/jbc.M40230520015044484
    [Google Scholar]
  178. KakaralaM. BrennerD.E. KorkayaH. ChengC. TaziK. GinestierC. LiuS. DontuG. WichaM.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine.Breast Cancer Res. Treat.2010122377778510.1007/s10549‑009‑0612‑x19898931
    [Google Scholar]
  179. LindvallC. BuW. WilliamsB.O. LiY. Wnt signaling, stem cells, and the cellular origin of breast cancer.Stem Cell Rev.20073215716810.1007/s12015‑007‑0025‑317873348
    [Google Scholar]
  180. LiuS. DontuG. WichaM.S. Mammary stem cells, self-renewal pathways, and carcinogenesis.Breast Cancer Res.200573869510.1186/bcr102115987436
    [Google Scholar]
  181. ChenY. ShuW. ChenW. WuQ. LiuH. CuiG. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells.Basic Clin. Pharmacol. Toxicol.2007101642743310.1111/j.1742‑7843.2007.00142.x17927689
    [Google Scholar]
  182. YangJ. CaoY. SunJ. ZhangY. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells.Med. Oncol.20102741114111810.1007/s12032‑009‑9344‑319908170
    [Google Scholar]
  183. AggarwalB.B. ShishodiaS. TakadaY. BanerjeeS. NewmanR.A. Bueso-RamosC.E. PriceJ.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice.Clin. Cancer Res.200511207490749810.1158/1078‑0432.CCR‑05‑119216243823
    [Google Scholar]
  184. LabbozzettaM. NotarbartoloM. PomaP. MauriciA. IngugliaL. MarchettiP. RizziM. BaruchelloR. SimoniD. D’AlessandroN. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer.Ann. N. Y. Acad. Sci.20091155127828310.1111/j.1749‑6632.2009.03699.x19250217
    [Google Scholar]
  185. LimtrakulP. ChearwaeW. ShuklaS. PhisalphongC. AmbudkarS.V. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin.Mol. Cell. Biochem.20072961-2859510.1007/s11010‑006‑9302‑816960658
    [Google Scholar]
  186. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  187. XueJ.P. WangG. ZhaoZ.B. WangQ. ShiY. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells.Oncol. Rep.20143241647165310.3892/or.2014.336525109508
    [Google Scholar]
  188. CharalambousC. PittaC.A. ConstantinouA.I. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells.BMC Cancer201313123810.1186/1471‑2407‑13‑23823675643
    [Google Scholar]
  189. González-VallinasM. MolinaS. VicenteG. Sánchez-MartínezR. VargasT. García-RiscoM.R. FornariT. RegleroG. Ramírez de MolinaA. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.Electrophoresis201435111719172710.1002/elps.20140001124615943
    [Google Scholar]
  190. McGuireK.P. NgoubillyN. NeavynM. Lanza-JacobyS. 3,3′-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells.J. Surg. Res.2006132220821310.1016/j.jss.2006.02.00816580691
    [Google Scholar]
  191. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: an evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc359924060863
    [Google Scholar]
  192. KarsM.D. IşeriÖ.D. GündüzU. UralA.U. ArpaciF. MolnárJ. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds.Anticancer Res.2006266B4559456817201178
    [Google Scholar]
  193. XuH.B. LiL. FuJ. MaoX.P. XuL.Z. Reversion of multidrug resistance in a chemoresistant human breast cancer cell line by β-elemene.Pharmacology2012895-630331210.1159/00033717822573000
    [Google Scholar]
  194. CridgeB.J. LarsenL. RosengrenR.J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers.Oncol. Discov.201311610.7243/2052‑6199‑1‑6
    [Google Scholar]
  195. El-KershD.M. EzzatS.M. SalamaM.M. MahrousE.A. AttiaY.M. AhmedM.S. ElmazarM.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer.Sci. Rep.2021111712110.1038/s41598‑021‑86599‑z3378254
    [Google Scholar]
  196. BraicuC. GhermanC.D. IrimieA. Berindan-NeagoeI. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells.J. Nanosci. Nanotechnol.201313163263710.1166/jnn.2013.6882236467886
    [Google Scholar]
  197. GobbiS. MartiniS. RozzaR. SpinelloA. CaciollaJ. RampaA. BellutiF. ZaffaroniN. MagistratoA. BisiA. Switching from aromatase inhibitors to dual targeting flavonoid-based compounds for breast cancer treatment.Molecules2023287304710.3390/molecules2807304737049810
    [Google Scholar]
  198. KhandelwalV. ChoudharyP.K. Immunomodulating potential of Neolamarckia cadamba (Roxb.) Bark extract.J. Pure Appl. Microbiol.202014164164610.22207/JPAM.14.1.66
    [Google Scholar]
  199. GurjarM.K. JatB.L. ChoudharyP. KumarV. Bioefficacy of newer insecticides and botanicals against red pumpkin beetle Raphidopalpa foveicollis (Lucas) on bottle gourd, Lagenaria siceraria (Molina) Stand.J. Entomol. Res.202246357057510.5958/0974‑4576.2022.00099.8
    [Google Scholar]
  200. GurjarM.K. JatB.L. ChoudharyP. NayakR.K. Screening of bottle gourd genotypes/varieties for resistance against red pumpkin beetle Raphidopalpa foveicollis (Lucas) in semi-arid region of Rajasthan.Indian J. Ecol.202249517731781
    [Google Scholar]
  201. GoelA BhatiaAK. Ocimum sanctum: in vitro antiviral potential against animal viruses.IJTK211120125
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073269599231009115338
Loading
/content/journals/cchts/10.2174/0113862073269599231009115338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test