Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Phosphoserine aminotransferase 1 (PSAT1) catalyzes 3-phosphohydroxylpyruvate and glutamate into 3-phosphoserine and α-ketoglutamate. It integrates metabolic pathways critical for cell proliferation, survival, migration and epigenetics, such as glycolysis, de novo serine synthesis, citric acid cycle and one-carbon metabolism. The level of this enzyme has been disclosed to be closely related to the occurrence, progression and prognosis of cancers like non-small cell lung cancer, colorectal cancer, esophageal squamous cell carcinoma, breast cancer, etc. via metabolic catalyzation, PSAT1 offers anabolic and energic supports for these tumor cells, affecting their proliferation, survival, autophagy, migration and invasion. Such functions also influence the epigenetics of other noncancerous cells and drive them to serve tumor cells. Moreover, PSAT1 exerts a non-enzymatic regulation of the IGF1 pathway and nuclear PKM2 to promote EMT and cancer metastasis. Genetically manipulating PSAT1 alters tumor progression in vitro and in vivo. This paper reviews the role and action mechanism of PSAT1 in tumor biology and chemotherapy as well as the regulation of PSAT1 expression, exhibiting the perspective for PSAT1 as a new molecular marker and target for cancer diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009622666220829105300
2023-03-01
2025-07-05
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009622666220829105300
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test