Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background: T cell acute lymphoblastic leukemia (T-ALL) is an invasive hematological malignant disorder of T cell progenitors. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway plays an important role in the development of T-ALL and in the inhibition of the key molecule, JAK2, and could suppress T-ALL cell proliferation. Objective: The objective of this study was to investigate the in vitro anti-tumor effects of a novel nilotinib derivative, ND-17, on cancer cell lines via its interactions with JAK2. Methods: The effects of ND-17 on cell proliferation and on cell cycle and apoptosis were evaluated using the tetrazolium assay and flow cytometry, respectively. In addition, the ND-17/JAK2 binding interactions were evaluated using surface plasmon resonance and western blot analyses. Results: ND-17 exerted the greatest inhibitory effects on T-ALL cells amongst all hematological cancer cell lines tested. Flow cytometric analysis indicated that ND-17 blocked the cell cycle at the S phase in T-ALL cells. Nilotinib did not significantly inhibit T-ALL cell growth or regulate the cell cycle. Preliminary investigations revealed that the regulation of cyclin-dependent kinases/cyclins was attributed to ND-17-induced cell cycle arrest. Furthermore, ND-17 could bind to JAK2 with strong affinity, and more importantly, ND-17 bound to the ATP pocket of JAK2 in a manner similar to the potent inhibitor. Thus, ND-17 treatment exhibited a prominent effect in inhibiting the phosphorylation of JAK2 in T-ALL cells. An increase in the phosphorylation of JAK2 was observed in interleukin-6- stimulated Jurkat cells, which was reversed by ND-17 treatment. Meanwhile, the combination of TG- 101348 and ND-17 led to further improvement in inhibiting the phosphorylation of JAK2. Moreover, the transfection and knockdown of JAK2 altered the inhibitory effect of ND-17 on Jurkat cell viability. In addition, ND-17 treatment suppressed the JAK/STAT, phosphatidylinositol-3-kinase/protein kinase B/mechanistic target of rapamycin, and mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1 and 2 signaling pathways. Conclusion: These findings suggest that ND-17 could be a promising JAK2 inhibitor for the treatment of T-ALL.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009622666220304202116
2022-05-01
2024-10-11
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009622666220304202116
Loading
  • Article Type: Research Article
Keyword(s): cell cycle; cell growth; JAK2; MAPK pathways; ND-17; T-cell acute lymphoblastic leukemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test