Skip to content
2000
Volume 11, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Gastric cancer is the leading cause of cancer-related death worldwide, and treatment options include surgery and chemotherapy. Because of its prevalence, chemotherapy for gastric cancer treatment represents an active area of pharmacology research, and different small compounds have been used as single treatments or in combination therapy. Unfortunately, chemoresistance is a common phenomenon in gastric cancer cells, and the current arsenal of small compounds used in chemotherapy is not effective for long periods of treatment. Thus, to understand how gastric cancer cells develop chemoresistance and also to find new protein targets and small compounds for gastric cancer treatment, a systems pharmacology-based study was performed using the proteomic and small compounds-protein interaction data available for Homo sapiens. A major physical protein-protein and chemo-protein interaction (PPPI-PCPI) network was obtained, and five subnetworks representing different biological processes were observed. Interestingly, the small compounds currently used to treat gastric cancer converge on the same biological processes, potentially resulting in the development of chemoresistance. This analysis was followed by a network centrality study, which allows for selection of protein targets and/or small compounds, termed bottlenecks, that are defined as central nodes. The bottlenecks control the flow of biological information within the network, and their disruption can break the entire network into small components. From ten major bottlenecks observed within the network, seven bottlenecks represent new protein targets that are suitable for the development of new combinatory drug regimens for gastric cancer treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/156800911796798977
2011-09-01
2025-05-07
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/156800911796798977
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test