Skip to content
2000
image of Advances in Radiation Therapy Enhancement and Radio-Protection By Nano-Curcumins: A Systematic Review

Abstract

Introduction/Objective

Nano-curcumins (Nano-CUR) improve solubility, bioavailability, and stability of the release of CUR into the body. In this systematic review, we aim to investigate different CUR nanoformulations' in targeting radiosensitizing pathways and radioprotective mechanisms.

Methods

We thoroughly searched electronic databases, including PubMed/MEDLINE, Web of Science, Scopus, Embase, and Cochrane Library to identify pertinent studies published before July 21, 2024. inclusion and exclusion criteria were set based on the study's purposes. Two reviewers independently performed data extraction to ensure precision and minimize bias. Subsequently, the data were extracted and analyzed.

Results

A total of 24 articles were included. Nano-CURs by scavenging the levels of reactive oxygen species (ROS), decrease malondialdehyde (MDA), improve superoxide dismutase (SOD), prevent DNA methylation, reduce tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-b and transforming growth factor-beta (TGF-β1), improve cell cycle, inhibit vascular endothelial growth factor (VEGF), attenuate cell cytotoxicity and modulate cell apoptosis induce its radioprotective effects. In contrast, Nano-CUR induces oxidative stress and accumulation ROS, inhibits nuclear factor-κB (NF- κB), activates the expression of TNF, TGF-β, phosphatidylinositol and FoxO, causing DNA damage, activating proapoptotic pathways (boosted P53, P21 and BAX expressions), cell cycle arrest, reducing hypoxia-inducible factor (HIF-1α), revealed radiosensitizing effects.

Conclusion

Nano-CURs improve CUR bioavailability and increase cancerous cells' sensitivity to radiation. They also protect healthy cells from ionizing radiation without significant side effects.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096360434250211042759
2025-03-07
2025-06-20
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  4. Mattiuzzi C. Lippi G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222 10.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  5. Sapio L. Naviglio S. Innovation through tradition: The current challenges in cancer treatment. Int. J. Mol. Sci. 2022 23 10 5296 10.3390/ijms23105296 35628105
    [Google Scholar]
  6. Chakraborty S. Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012 6 ed16 24883085
    [Google Scholar]
  7. Mollaei M. Hassan Z.M. Khorshidi F. Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol. 2021 14 5 101056 10.1016/j.tranon.2021.101056 33684837
    [Google Scholar]
  8. Katta B. Vijayakumar C. Dutta S. Dubashi B. Nelamangala Ramakrishnaiah V.P. The incidence and severity of patient-reported side effects of chemotherapy in routine clinical care: A prospective observational study. Cureus 2023 15 4 e38301 10.7759/cureus.38301 37261144
    [Google Scholar]
  9. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  10. Kim W.J. Kang H. Choi G.J. Shin H.Y. Baek C.W. Jung Y.H. Woo Y.C. Kim J.Y. Yon J.H. Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J. Surg. Res. 2014 187 1 169 175 10.1016/j.jss.2013.09.034 24555878
    [Google Scholar]
  11. Gong L. Zhang Y. Liu C. Zhang M. Han S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine 2021 16 1083 1102 10.2147/IJN.S290438 33603370
    [Google Scholar]
  12. Raeisi E. Heidari-Soureshjani S. Sherwin C.M.T. Khaghani A. Anti-cancer effects of soy isoflavones against cancer by radiosensitizing properties: A systematic review. Curr. Cancer Ther. Rev. 2024 20 1 14 10.2174/0115733947313316240603101926
    [Google Scholar]
  13. Raeisi E. Heidari-Soureshjani S. Mt Sherwin C. Bagheri Z. Radiotherapy enhancing and radioprotective properties of berberine: A systematic review. Recent Pat Anticancer Drug Discov 2024 10.2174/0115748928315442240624120104 38984581
    [Google Scholar]
  14. Shahbazi-Gahrouei D. Raeisi E. Raeisi F. Heidarian E. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells. J. Med. Signals Sens. 2019 9 1 68 74 10.4103/jmss.JMSS_25_18 30967992
    [Google Scholar]
  15. Li J. Wang X. Xue L. He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024 10 12 e33103 10.1016/j.heliyon.2024.e33103 39022084
    [Google Scholar]
  16. de Waure C. Bertola C. Baccarini G. Chiavarini M. Mancuso C. Exploring the contribution of curcumin to cancer therapy: A systematic review of randomized controlled trials. Pharmaceutics 2023 15 4 1275 10.3390/pharmaceutics15041275 37111761
    [Google Scholar]
  17. Yang Z.J. Huang S.Y. Zhou D.D. Xiong R.G. Zhao C.N. Fang A.P. Zhang Y.J. Li H.B. Zhu H.L. Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants 2022 11 8 1481 10.3390/antiox11081481 36009200
    [Google Scholar]
  18. El-Saadony M.T. Yang T. Korma S.A. Sitohy M. Abd El-Mageed T.A. Selim S. Al Jaouni S.K. Salem H.M. Mahmmod Y. Soliman S.M. Mo’men S.A.A. Mosa W.F.A. El-Wafai N.A. Abou-Aly H.E. Sitohy B. Abd El-Hack M.E. El-Tarabily K.A. Saad A.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023 9 1040259 10.3389/fnut.2022.1040259 36712505
    [Google Scholar]
  19. Stohs S.J. Chen O. Ray S.D. Ji J. Bucci L.R. Preuss H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules 2020 25 6 1397 10.3390/molecules25061397 32204372
    [Google Scholar]
  20. Prasad S. DuBourdieu D. Srivastava A. Kumar P. Lall R. Metal–curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. 2021 22 13 7094 10.3390/ijms22137094 34209461
    [Google Scholar]
  21. Nosrati H. Danafar H. Rezaeejam H. Gholipour N. Rahimi-Nasrabadi M. Evaluation radioprotective effect of curcumin conjugated albumin nanoparticles. Bioorg. Chem. 2020 100 103891 10.1016/j.bioorg.2020.103891 32422388
    [Google Scholar]
  22. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  23. Ailioaie L.M. Ailioaie C. Litscher G. Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics 2021 13 10 1562 10.3390/pharmaceutics13101562 34683855
    [Google Scholar]
  24. Zhu F. Tan G. Jiang Y. Yu Z. Ren F. Rational design of multi-stimuli-responsive gold nanorod–curcumin conjugates for chemo-photothermal synergistic cancer therapy. Biomater. Sci. 2018 6 11 2905 2917 10.1039/C8BM00691A 30209445
    [Google Scholar]
  25. Karimi F. Shaabani E. Martínez-Rovira I. Yousef I. Ghahremani M.H. Kharrazi S. Infrared microspectroscopy studies on the protective effect of curcumin coated gold nanoparticles against H 2 O 2 -induced oxidative stress in human neuroblastoma SK-N-SH cells. Analyst (Lond.) 2021 146 22 6902 6916 10.1039/D1AN01379C 34636832
    [Google Scholar]
  26. Di Francesco M. Pastorino F. Ferreira M. Fragassi A. Di Francesco V. Palange A.L. Celia C. Di Marzio L. Cilli M. Bensa V. Ponzoni M. Decuzzi P. Augmented efficacy of nano-formulated docetaxel plus curcumin in orthotopic models of neuroblastoma. Pharmacol. Res. 2023 188 106639 10.1016/j.phrs.2022.106639 36586642
    [Google Scholar]
  27. Mofid B. Razzaghdoust A. Sadipour A. Bakhshandeh M. Mahdavi A. Simforoush N. EP-1549: Lack of radioprotective efficacy of nanocurcumin in prostate cancer patients undergoing radiotherapy. Radiother. Oncol. 2018 127 S835 S836 10.1016/S0167‑8140(18)31858‑9
    [Google Scholar]
  28. Yallapu M.M. Maher D.M. Sundram V. Bell M.C. Jaggi M. Chauhan S.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J. Ovarian Res. 2010 3 1 11 10.1186/1757‑2215‑3‑11 20429876
    [Google Scholar]
  29. Shi H.S. Gao X. Li D. Zhang Q.W. Wang Y.S. Zheng Y. Cai L.L. Zhong R.M. Rui A. Li Z.Y. Zheng H. Chen X.C. Chen L.J. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int. J. Nanomedicine 2012 7 2601 2611 22679371
    [Google Scholar]
  30. Wen C. Zhou Y. Zhou C. Zhang Y. Hu X. Li J. Yin H. Enhanced radiosensitization effect of curcumin delivered by PVP-PCL nanoparticle in lung cancer. J. Nanomater. 2017 2017 1 1 8 10.1155/2017/9625909
    [Google Scholar]
  31. Xu H. Wang T. Yang C. Li X. Liu G. Yang Z. Singh P.K. Krishnan S. Ding D. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation. Adv. Funct. Mater. 2018 28 14 1707140 10.1002/adfm.201707140
    [Google Scholar]
  32. Minafra L. Porcino N. Bravatà V. Gaglio D. Bonanomi M. Amore E. Cammarata F.P. Russo G. Militello C. Savoca G. Baglio M. Abbate B. Iacoviello G. Evangelista G. Gilardi M.C. Bondì M.L. Forte G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep. 2019 9 1 11134 10.1038/s41598‑019‑47553‑2 31366901
    [Google Scholar]
  33. Saadipoor A. Razzaghdoust A. Simforoosh N. Mahdavi A. Bakhshandeh M. Moghadam M. Abdollahi H. Mofid B. Randomized, double‐blind, placebo‐controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother. Res. 2019 33 2 370 378 10.1002/ptr.6230 30427093
    [Google Scholar]
  34. Nosrati H. Charmi J. Abhari F. Attari E. Bochani S. Johari B. Rezaeejam H. Kheiri Manjili H. Davaran S. Danafar H. Improved synergic therapeutic effects of chemoradiation therapy with the aid of a co-drug-loaded nano-radiosensitizer under conventional-dose X-ray irradiation. Biomater. Sci. 2020 8 15 4275 4286 10.1039/D0BM00353K 32589170
    [Google Scholar]
  35. Yang K. Liao Z. Wu Y. Li M. Guo T. Lin J. Li Y. Hu C. Curcumin and Glu-GNPs induce radiosensitivity against breast cancer stem-like cells. BioMed Res. Int. 2020 2020 1 11 10.1155/2020/3189217 33457406
    [Google Scholar]
  36. Askar M.A. El Shawi O.E. Abou zaid O.A.R. Mansour N.A. Hanafy A.M. Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumour Biol. 2021 43 1 225 247 10.3233/TUB‑211506 34542050
    [Google Scholar]
  37. Afereydoon S. Haghiralsadat F. Hamzian N. Shams A. Hemati M. Naghib S.M. Shabani M. Zandieh-doulabi B. Tofighi D. Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy. Front. Bioeng. Biotechnol. 2022 10 917368 10.3389/fbioe.2022.917368 36046674
    [Google Scholar]
  38. Gao R. Gu Y. Yang Y. He Y. Huang W. Sun T. Tang Z. Wang Y. Yang W. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma. J. Nanobiotechnology 2022 20 1 115 10.1186/s12951‑022‑01316‑w 35248069
    [Google Scholar]
  39. Varnamkhasti T.J. Jafarzadeh M. Sadeghizadeh M. Aghili M. Radiosensitizing effect of dendrosomal nanoformulation of curcumin on cancer cells. Pharmacol. Rep. 2022 74 4 718 735 10.1007/s43440‑022‑00383‑y 35819593
    [Google Scholar]
  40. Salehiabar M. Ghaffarlou M. Mohammadi A. Mousazadeh N. Rahimi H. Abhari F. Rashidzadeh H. Nasehi L. Rezaeejam H. Barsbay M. Ertas Y.N. Nosrati H. Kavetskyy T. Danafar H. Targeted CuFe2O4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy. J. Control. Release 2023 353 850 863 10.1016/j.jconrel.2022.12.004 36493951
    [Google Scholar]
  41. Mohammadi A. Bagheri F. Abutalebi Y. Aghaei A. Danafar H. Platinum nanoparticles-embedded single-walled carbon nanotubes as a new carrier for curcumin delivery and investigating its anticancer effect on cell line 4T1. Heliyon 2024 10 13 e33703 10.1016/j.heliyon.2024.e33703 39027555
    [Google Scholar]
  42. Yektamanesh M. Ayyami Y. Ghorbani M. Dastgir M. Malekzadeh R. Mortezazadeh T. Characterization of multifunctional β-cyclodextrin-coated Bi2O3 nanoparticles conjugated with curcumin for CT imaging-guided synergetic chemo-radiotherapy in breast cancer. Int. J. Pharm. 2024 659 124264 10.1016/j.ijpharm.2024.124264 38788969
    [Google Scholar]
  43. Farhadi M. Bakhshandeh M. Shafiei B. Mahmoudzadeh A. Hosseinimehr S.J. The radioprotective effects of nano-curcumin against genotoxicity induced by iodine-131 in patients with differentiated thyroid carcinoma (DTC) by micronucleus assay. Int. J. Cancer Manag. 2018 11 6 10.5812/ijcm.14193
    [Google Scholar]
  44. Delavarian Z. Pakfetrat A. Ghazi A. Jaafari M.R. Homaei Shandiz F. Dalirsani Z. Mohammadpour A.H. Rahimi H.R. Oral administration of nanomicelle curcumin in the prevention of radiotherapy‐induced mucositis in head and neck cancers. Spec. Care Dentist. 2019 39 2 166 172 10.1111/scd.12358 30761565
    [Google Scholar]
  45. Sadeghi R. Razzaghdoust A. Bakhshandeh M. Nasirinezhad F. Mofid B. Nanocurcumin as a radioprotective agent against radiationinduced mortality in mice. Nanomed. J. 2019 6 1 43 49 10.22038/nmj.2019.06.006
    [Google Scholar]
  46. Kia S.J. Basirat M. Saedi H.S. Arab S.A. Effects of nanomicelle curcumin capsules on prevention and treatment of oral mucosits in patients under chemotherapy with or without head and neck radiotherapy: A randomized clinical trial. BMC Complement. Med. Ther. 2021 21 1 232 10.1186/s12906‑021‑03400‑4 34521398
    [Google Scholar]
  47. Chen T. Zhuang B. Huang Y. Liu Y. Yuan B. Wang W. Yuan T. Du L. Jin Y. Inhaled curcumin mesoporous polydopamine nanoparticles against radiation pneumonitis. Acta Pharm. Sin. B 2022 12 5 2522 2532 10.1016/j.apsb.2021.10.027 35646537
    [Google Scholar]
  48. Evans A.C. Martin K.A. Saxena M. Bicher S. Wheeler E. Cordova E.J. Porada C.D. Almeida-Porada G. Kato T.A. Wilson P.F. Coleman M.A. Curcumin nanodiscs improve solubility and serve as radiological protectants against ionizing radiation exposures in a cell-cycle dependent manner. Nanomaterials (Basel) 2022 12 20 3619 10.3390/nano12203619 36296810
    [Google Scholar]
  49. Farhood B. Najafi M. Talakesh T. Tabatabaee N. Atoof F. Aliasgharzadeh A. Sarvizade M. Effect of nano-curcumin on radiotherapy-induced skin reaction in breast cancer patients: A randomized, triple-blind, placebo-controlled trial. Curr. Radiopharm. 2022 15 4 332 340 10.2174/1874471015666220623104316 35747962
    [Google Scholar]
  50. Bagheri H. Najafi M. Ghanbarzadeh A. Farhood B. Noodeh F.A. Mosaed R. Hassanzadeh G. Histopathological evaluation of nanocurcumin for mitigation of radiation- induced small intestine injury. Curr. Radiopharm. 2023 16 1 57 63 10.2174/1874471015666220901142858 36056845
    [Google Scholar]
  51. Meabed O.M. Shamaa A. Abdelrahman I.Y. El-Sayyed G.S. Mohammed S.S. The effect of nano-chitosan and nano-curcumin on radiated parotid glands of albino rats: Comparative study. J. Cluster Sci. 2023 34 2 977 989 10.1007/s10876‑022‑02281‑y
    [Google Scholar]
  52. Varma A.C. Chapter 2 - Curcuma longa. Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods Academic Press 2023 15 30
    [Google Scholar]
  53. Peng Y. Ao M. Dong B. Jiang Y. Yu L. Chen Z. Hu C. Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021 15 4503 4525 10.2147/DDDT.S327378 34754179
    [Google Scholar]
  54. Paknia F. Parchami N. Nasry N. Mohabatkar H. Therapeutic activities and biological effects of curcumin, as a natural multi-target compound, on human health: A minireview. Shahrekord Univ. Med. Sci. J. 2022 24 3 145 152 10.34172/jsums.2022.24
    [Google Scholar]
  55. Miao H.H. Zhen Y. Ding G.N. Hong F.X. Xie Z.C. Tian M. Ginsenoside Rg1 attenuates isoflurane-induced caspase-3 activation via inhibiting mitochondrial dysfunction. Biomed. Environ. Sci. 2015 28 2 116 126 25716562
    [Google Scholar]
  56. Momtazi-Borojeni A.A. Ghasemi F. Hesari A. Majeed M. Caraglia M. Sahebkar A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr. Pharm. Des. 2018 24 19 2121 2128 10.2174/1381612824666180522105202 29788875
    [Google Scholar]
  57. Akbari S. Kariznavi E. Jannati M. Elyasi S. Tayarani-Najaran Z. Curcumin as a preventive or therapeutic measure for chemotherapy and radiotherapy induced adverse reaction: A comprehensive review. Food Chem. Toxicol. 2020 145 111699 10.1016/j.fct.2020.111699 32858134
    [Google Scholar]
  58. Rahimi H.R. Nedaeinia R. Sepehri Shamloo A. Nikdoust S. Kazemi Oskuee R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed. 2016 6 4 383 398 27516979
    [Google Scholar]
  59. Mukherjee S. Ray G. Gandhi P. Kar S.K. Nano curcumin: Making it useful for human therapy. J. Nanomed. Nanotechnol. 2020 11 487 1 10 10.47755/JNanotechNanomedRes.2020.1.001
    [Google Scholar]
  60. Alafaleq N.O. Alomari A. Khan M.S. Shaik G.M. Hussain A. Ahmed F. Hassan I.M. Alhazza I. Alokail M.S. Alenad A.M.H. Anticancer potential of gold nanoparticles (AuNPs) using a battery of in vitro tests. Nanotechnol. Rev. 2022 11 1 3292 3304 10.1515/ntrev‑2022‑0502
    [Google Scholar]
  61. Zughaibi T.A. Jabir N.R. Khan A.U. Khan M.S. Tabrez S. Screening of Cu 4 O 3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem. Funct. 2023 41 8 1174 1187 10.1002/cbf.3850 37691077
    [Google Scholar]
  62. Jiang Z. Gan J. Wang L. Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem. 2023 399 133952 10.1016/j.foodchem.2022.133952 35998492
    [Google Scholar]
  63. Ban C. Jo M. Park Y.H. Kim J.H. Han J.Y. Lee K.W. Kweon D.H. Choi Y.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020 302 125328 10.1016/j.foodchem.2019.125328 31404868
    [Google Scholar]
  64. Sivadasan D. Ramakrishnan K. Mahendran J. Ranganathan H. Karuppaiah A. Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int. J. Mol. Sci. 2023 24 7 6199 10.3390/ijms24076199 37047172
    [Google Scholar]
  65. Khan S. Sharma A. Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv. Pharm. Bull. 2023 13 3 446 460 10.34172/apb.2023.056 37646052
    [Google Scholar]
  66. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  67. Azad A.K. Lai J. Sulaiman W.M.A.W. Almoustafa H. Alshehade S.A. Kumarasamy V. Subramaniyan V. The fabrication of polymer-based curcumin-loaded formulation as a drug delivery system: An updated review from 2017 to the present. Pharmaceutics 2024 16 2 160 10.3390/pharmaceutics16020160 38399221
    [Google Scholar]
  68. Compostella F. Pitirollo O. Silvestri A. Polito L. Glyco-gold nanoparticles: Synthesis and applications. Beilstein J. Org. Chem. 2017 13 1008 1021 10.3762/bjoc.13.100 28684980
    [Google Scholar]
  69. Li Z. Mu Y. Peng C. Lavin M.F. Shao H. Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 1 e1658 10.1002/wnan.1658 32602269
    [Google Scholar]
  70. Srivastava A. Prajapati A. Albumin and functionalized albumin nanoparticles: Production strategies, characterization, and target indications. Asian Biomed. 2020 14 6 217 242 10.1515/abm‑2020‑0032 37551304
    [Google Scholar]
  71. Thang N.H. Chien T.B. Cuong D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023 9 7 523 10.3390/gels9070523 37504402
    [Google Scholar]
  72. Maani E.V. Maani C.V. Radiation Therapy. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  73. Begg A.C. Stewart F.A. Vens C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 2011 11 4 239 253 10.1038/nrc3007 21430696
    [Google Scholar]
  74. Kim W. Lee S. Seo D. Kim D. Kim K. Kim E. Kang J. Seong K.M. Youn H. Youn B. Cellular stress responses in radiotherapy. Cells 2019 8 9 1105 10.3390/cells8091105 31540530
    [Google Scholar]
  75. Zheng Z. Su J. Bao X. Wang H. Bian C. Zhao Q. Jiang X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front. Immunol. 2023 14 1247268 10.3389/fimmu.2023.1247268 37600785
    [Google Scholar]
  76. Wang X.Q. Wang W. Peng M. Zhang X.Z. Free radicals for cancer theranostics. Biomaterials 2021 266 120474 10.1016/j.biomaterials.2020.120474 33125969
    [Google Scholar]
  77. Gabr S.A. Elsaed W.M. Eladl M.A. El-Sherbiny M. Ebrahim H.A. Asseri S.M. Eltahir Y.A.M. Elsherbiny N. Eldesoqui M. Curcumin modulates oxidative stress, fibrosis, and apoptosis in drug-resistant cancer cell lines. Life (Basel) 2022 12 9 1427 10.3390/life12091427 36143462
    [Google Scholar]
  78. Shi A. Liu L. Li S. Qi B. Natural products targeting the MAPK-signaling pathway in cancer: Overview. J. Cancer Res. Clin. Oncol. 2024 150 1 6 10.1007/s00432‑023‑05572‑7 38193944
    [Google Scholar]
  79. Zoi V. Kyritsis A.P. Galani V. Lazari D. Sioka C. Voulgaris S. Alexiou G.A. The role of curcumin in cancer: A focus on the PI3K/Akt pathway. Cancers (Basel) 2024 16 8 1554 10.3390/cancers16081554 38672636
    [Google Scholar]
  80. Sathyabhama M. Priya Dharshini L.C. Karthikeyan A. Kalaiselvi S. Min T. The credible role of curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals. Biomolecules 2022 12 10 1405 10.3390/biom12101405 36291614
    [Google Scholar]
  81. Chasara R.S. Ajayi T.O. Leshilo D.M. Poka M.S. Witika B.A. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon 2023 9 9 e19896 10.1016/j.heliyon.2023.e19896 37809420
    [Google Scholar]
  82. Mukherjee D. Krishnan A. Therapeutic potential of curcumin and its nanoformulations for treating oral cancer. World J. Methodol. 2023 13 3 29 45 10.5662/wjm.v13.i3.29 37456978
    [Google Scholar]
  83. Liu S. Wang W. Hu S. Jia B. Tuo B. Sun H. Wang Q. Liu Y. Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis. 2023 14 10 679 10.1038/s41419‑023‑06211‑2 37833255
    [Google Scholar]
  84. Valizadeh H. Abdolmohammadi-Vahid S. Danshina S. Ziya Gencer M. Ammari A. Sadeghi A. Roshangar L. Aslani S. Esmaeilzadeh A. Ghaebi M. Valizadeh S. Ahmadi M. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol. 2020 89 Pt B 107088 10.1016/j.intimp.2020.107088
    [Google Scholar]
  85. Siddiqui F.A. Prakasam G. Chattopadhyay S. Rehman A.U. Padder R.A. Ansari M.A. Irshad R. Mangalhara K. Bamezai R.N.K. Husain M. Ali S.M. Iqbal M.A. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci. Rep. 2018 8 1 8323 10.1038/s41598‑018‑25524‑3 29844464
    [Google Scholar]
  86. Kabir M.T. Rahman M.H. Akter R. Behl T. Kaushik D. Mittal V. Pandey P. Akhtar M.F. Saleem A. Albadrani G.M. Kamel M. Khalifa S.A.M. El-Seedi H.R. Abdel-Daim M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 2021 11 3 392 10.3390/biom11030392 33800000
    [Google Scholar]
  87. Zeligs K.P. Neuman M.K. Annunziata C.M. Molecular pathways: The balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-κB signaling for cancer treatment. Clin. Cancer Res. 2016 22 17 4302 4308 10.1158/1078‑0432.CCR‑15‑1374 27422962
    [Google Scholar]
  88. Li F. Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim. Biophys. Acta 2010 1805 2 167 180 20079806
    [Google Scholar]
  89. Baskar R. Lee K.A. Yeo R. Yeoh K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012 9 3 193 199 10.7150/ijms.3635 22408567
    [Google Scholar]
  90. Hu Y. Cheng L. Du S. Wang K. Liu S. Antioxidant curcumin induces oxidative stress to kill tumor cells (Review). Oncol. Lett. 2023 27 2 67 10.3892/ol.2023.14200 38192657
    [Google Scholar]
  91. Roy M. Sinha D. Mukherjee S. Biswas J. Curcumin prevents DNA damage and enhances the repair potential in a chronically arsenic-exposed human population in West Bengal, India. Eur. J. Cancer Prev. 2011 20 2 123 131 10.1097/CEJ.0b013e328341017a 21332098
    [Google Scholar]
  92. Turnbull T. Douglass M. Williamson N.H. Howard D. Bhardwaj R. Lawrence M. Paterson D.J. Bezak E. Thierry B. Kempson I.M. Cross-correlative single-cell analysis reveals biological mechanisms of nanoparticle radiosensitization. ACS Nano 2019 13 5 5077 5090 10.1021/acsnano.8b07982 31009200
    [Google Scholar]
  93. Batool S. Asim L. Raffaq Qureshi F. Masood A. Mushtaq M. Saleem R.S.Z. Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer- an insight into anticancer drug development. Anticancer. Agents Med. Chem. 2024 24 10.2174/0118715206302216240628072554 38963106
    [Google Scholar]
  94. Moawad M. Nasr G.M. Osman A.S. Shaker E.S. Curcumin nanocapsules effect in apoptotic processes, gene expression, and cell cycle on Hep-G2 cell lines. Int. J. Immunopathol. Pharmacol. 2023 37 03946320231176396 10.1177/03946320231176396 37190979
    [Google Scholar]
  95. Li M.Y. Liu J.Q. Chen D.P. Li Z.Y. Qi B. He L. Yu Y. Yin W.J. Wang M.Y. Lin L. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol. Ther. 2017 18 9 681 693 10.1080/15384047.2017.1360442 28799829
    [Google Scholar]
  96. Syljuåsen R.G. Cell Cycle Effects in Radiation Oncology. Radiation Oncology. Wenz F. Cham Springer International Publishing 2019 1 8 10.1007/978‑3‑319‑52619‑5_101‑1
    [Google Scholar]
  97. Sa G. Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div. 2008 3 1 14 10.1186/1747‑1028‑3‑14 18834508
    [Google Scholar]
  98. Mukhopadhyay A. Banerjee S. Stafford L.J. Xia C. Liu M. Aggarwal B.B. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 2002 21 57 8852 8861 10.1038/sj.onc.1206048 12483537
    [Google Scholar]
  99. Forte G.I. Minafra L. Bravatà V. Cammarata F.P. Lamia D. Pisciotta P. Cirrone G.A.P. Cuttone G. Gilardi M.C. Russo G. Radiogenomics: The utility in patient selection. Transl. Cancer Res. 2017 6 S5 S852 S874 10.21037/tcr.2017.06.47
    [Google Scholar]
  100. Talib W.H. Al-hadid S.A. Wild Ali M.B. AL-Yasari I.H. Abd Ali M.R. Role of curcumin in regulating p53 in breast cancer: An overview of the mechanism of action. Breast Cancer (Dove Med. Press) 2018 10 207 217 10.2147/BCTT.S167812 30568488
    [Google Scholar]
  101. Miyata H. Doki Y. Yamamoto H. Kishi K. Takemoto H. Fujiwara Y. Yasuda T. Yano M. Inoue M. Shiozaki H. Weinstein I.B. Monden M. Overexpression of CDC25B overrides radiation-induced G2-M arrest and results in increased apoptosis in esophageal cancer cells. Cancer Res. 2001 61 7 3188 3193 11306507
    [Google Scholar]
  102. Liu Y.P. Zheng C.C. Huang Y.N. He M.L. Xu W.W. Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2020 2 3 315 340 10.3390/ijms25052911 38474160
    [Google Scholar]
  103. Moon D.O. Curcumin in cancer and inflammation: An in-depth exploration of molecular interactions, therapeutic potentials, and the role in disease management. Int. J. Mol. Sci. 2024 25 5 2911 10.3390/ijms25052911 38474160
    [Google Scholar]
  104. Lin Y. Bai L. Chen W. Xu S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin. Ther. Targets 2010 14 1 45 55 10.1517/14728220903431069 20001209
    [Google Scholar]
  105. Edwards R.L. Luis P.B. Nakashima F. Kunihiro A.G. Presley S.H. Funk J.L. Schneider C. Mechanistic differences in the inhibition of NF-κB by turmeric and its curcuminoid constituents. J. Agric. Food Chem. 2020 68 22 6154 6160 10.1021/acs.jafc.0c02607 32378408
    [Google Scholar]
  106. Wilken R. Veena M.S. Wang M.B. Srivatsan E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011 10 1 12 10.1186/1476‑4598‑10‑12 21299897
    [Google Scholar]
  107. Hassan F. Rehman M.S. Khan M.S. Ali M.A. Javed A. Nawaz A. Yang C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet. 2019 10 514 10.3389/fgene.2019.00514 31214247
    [Google Scholar]
  108. Kleibeuker E.A. Griffioen A.W. Verheul H.M. Slotman B.J. Thijssen V.L. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist. Updat. 2012 15 3 173 182 10.1016/j.drup.2012.04.002 22561672
    [Google Scholar]
  109. Goedegebuure R.S.A. de Klerk L.K. Bass A.J. Derks S. Thijssen V.L.J.L. Combining radiotherapy with anti-angiogenic therapy and immunotherapy; A therapeutic triad for cancer? Front. Immunol. 2019 9 3107 10.3389/fimmu.2018.03107 30692993
    [Google Scholar]
  110. Nieder C. Wiedenmann N. Andratschke N. Molls M. Current status of angiogenesis inhibitors combined with radiation therapy. Cancer Treat. Rev. 2006 32 5 348 364 10.1016/j.ctrv.2006.03.006 16713103
    [Google Scholar]
  111. Wang T. Chen J. Effects of curcumin on vessel formation insight into the pro- and antiangiogenesis of curcumin. Evid. Based Complement. Alternat. Med. 2019 2019 1 9 10.1155/2019/1390795 31320911
    [Google Scholar]
  112. Bhandarkar S.S. Arbiser J.L. Curcumin as an inhibitor of angiogenesis. Adv. Exp. Med. Biol. 2007 595 185 195 10.1007/978‑0‑387‑46401‑5_7 17569211
    [Google Scholar]
  113. Zahedi M. Salmani Izadi H. Arghidash F. Gumpricht E. Banach M. Sahebkar A. The effect of curcumin on hypoxia in the tumour microenvironment as a regulatory factor in cancer. Arch. Med. Sci. 2023 19 6 1616 1629 38058727
    [Google Scholar]
  114. Qannita R.A. Alalami A.I. Harb A.A. Aleidi S.M. Taneera J. Abu-Gharbieh E. El-Huneidi W. Saleh M.A. Alzoubi K.H. Semreen M.H. Hudaib M. Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in cancer: Emerging therapeutic strategies and pathway regulation. Pharmaceuticals (Basel) 2024 17 2 195 10.3390/ph17020195 38399410
    [Google Scholar]
  115. Bui B.P. Nguyen P.L. Lee K. Cho J. Hypoxia-inducible factor-1: A novel therapeutic target for the management of cancer, drug resistance, and cancer-related pain. Cancers (Basel) 2022 14 24 6054 10.3390/cancers14246054 36551540
    [Google Scholar]
  116. Muz B. de la Puente P. Azab F. Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.) 2015 3 83 92 10.2147/HP.S93413 27774485
    [Google Scholar]
  117. Nagaraju G.P. Zakka K.M. Landry J.C. Shaib W.L. Lesinski G.B. El-Rayes B.F. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int. J. Cancer 2019 145 6 1529 1537 10.1002/ijc.32227 30801702
    [Google Scholar]
  118. Zhao Y. Xing C. Deng Y. Ye C. Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 2024 11 1 234 251 10.1016/j.gendis.2023.02.039 37588219
    [Google Scholar]
  119. Zoi V. Galani V. Tsekeris P. Kyritsis A.P. Alexiou G.A. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers. Biomedicines 2022 10 2 312 10.3390/biomedicines10020312 35203521
    [Google Scholar]
  120. Faraonio R. Vergara P. Di Marzo D. Pierantoni M.G. Napolitano M. Russo T. Cimino F. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 2006 281 52 39776 39784 10.1074/jbc.M605707200 17077087
    [Google Scholar]
  121. Shabeeb D. Musa A.E. Abd Ali H.S. Najafi M. Curcumin protects against radiotherapy-induced oxidative injury to the skin. Drug Des. Devel. Ther. 2020 14 3159 3163 10.2147/DDDT.S265228 32848362
    [Google Scholar]
  122. Singh V. Gupta D. Arora R. NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015 3 1 e35 10.15190/d.2015.27 32309561
    [Google Scholar]
  123. Cheng H. Chen L. Huang M. Hou J. Chen Z. Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front. Immunol. 2022 13 967989 10.3389/fimmu.2022.967989 36353625
    [Google Scholar]
  124. Zhang C. Liang Z. Ma S. Liu X. Radiotherapy and cytokine storm: Risk and mechanism. Front. Oncol. 2021 11 670464 10.3389/fonc.2021.670464 34094967
    [Google Scholar]
  125. Majeed H. Gupta V. Adverse Effects of Radiation Therapy. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  126. Jiao Y. Cao F. Liu H. Radiation-induced cell death and its mechanisms. Health Phys. 2022 123 5 376 386 36069830
    [Google Scholar]
  127. Liu B. Bhatt D. Oltvai Z.N. Greenberger J.S. Bahar I. Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation and polypharmacological strategies. Sci. Rep. 2014 4 1 6245 10.1038/srep06245 25175563
    [Google Scholar]
  128. Italiano D. Lena A.M. Melino G. Candi E. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 2012 11 24 4589 4596 10.4161/cc.22853 23187810
    [Google Scholar]
  129. Munshi A. Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013 4 9-10 401 408 10.1177/1947601913485414 24349638
    [Google Scholar]
  130. Maier P. Hartmann L. Wenz F. Herskind C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci. 2016 17 1 102 10.3390/ijms17010102 26784176
    [Google Scholar]
  131. Mortezaee K. Salehi E. Mirtavoos-mahyari H. Motevaseli E. Najafi M. Farhood B. Rosengren R.J. Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol. 2019 234 8 12537 12550 10.1002/jcp.28122 30623450
    [Google Scholar]
  132. Kavanagh J.N. Redmond K.M. Schettino G. Prise K.M. DNA double strand break repair: A radiation perspective. Antioxid. Redox Signal. 2013 18 18 2458 2472 10.1089/ars.2012.5151 23311752
    [Google Scholar]
  133. Huang R.X. Zhou P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020 5 1 60 10.1038/s41392‑020‑0150‑x 32355263
    [Google Scholar]
  134. Deckbar D. Jeggo P.A. Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 2011 46 4 271 283 10.3109/10409238.2011.575764 21524151
    [Google Scholar]
  135. Mohseni M. Jafarpour S.M. Safaei M. Salimian M. Aliasgharzadeh A. Fahood B. The radioprotective effects of curcumin and trehalose against genetic damage caused by I-131. Indian J. Nucl. Med. 2018 33 2 99 104 10.4103/ijnm.IJNM_158_17 29643668
    [Google Scholar]
  136. Xuan L. Ju Z. Skonieczna M. Zhou P. K. Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 2023 4 4 e327 10.1002/mco2.327 37457660
    [Google Scholar]
  137. Sharma S. Parveen R. Chatterji B.P. Toxicology of nanoparticles in drug delivery. Curr. Pathobiol. Rep. 2021 9 4 133 144 10.1007/s40139‑021‑00227‑z 34840918
    [Google Scholar]
  138. Yan L. Gu Z. Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials: Generation of intracellular reactive oxygen species. Chem. Asian J. 2013 8 10 2342 2353 10.1002/asia.201300542 23881693
    [Google Scholar]
  139. Wolfram J. Zhu M. Yang Y. Shen J. Gentile E. Paolino D. Fresta M. Nie G. Chen C. Shen H. Ferrari M. Zhao Y. Safety of nanoparticles in medicine. Curr. Drug Targets 2015 16 14 1671 1681 10.2174/1389450115666140804124808 26601723
    [Google Scholar]
  140. León-Silva S. Fernández-Luqueño F. López-Valdez F. Silver nanoparticles (AgNP) in the environment: A review of potential risks on human and environmental health. Water Air Soil Pollut. 2016 227 9 306 10.1007/s11270‑016‑3022‑9
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096360434250211042759
Loading
/content/journals/ccdt/10.2174/0115680096360434250211042759
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: radiotherapy ; Nano-curcumin ; radiosensitize ; cancer ; nanoformulation ; radioprotective ; curcumin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test