Skip to content
2000
image of Cancer Immunotherapies: Navigating the Immune Landscape

Abstract

Biotechnology has paved the way for the development of cancer therapeutics that harness biological systems. Cancer immunotherapy (CI) is a pivotal and swiftly progressing therapeutic modality, alongside surgical intervention, cytotoxic chemotherapy, radiation therapy, and targeted therapy. Therefore, this is the fifth cornerstone of cancer management. Biotechnological pharmaceuticals are superior modalities for combating neoplastic conditions when juxtaposed with conventional chemical therapeutics. Considering empirical evidence, it can be posited that biotechnology exhibits a heightened level of precision in targeting malignant cells associated with cancer, thereby minimizing collateral damage compared to conventional chemotherapeutic approaches. Furthermore, this approach harnesses the inherent capabilities of the immune system to impede cancer recurrence, thereby facilitating a more proactive therapeutic intervention, as opposed to a mere deleterious remedy. Novel cancer immunotherapeutic medications, along with uncomplicated methodologies that enable the quantitative evaluation of the effectiveness of compounds capable of modifying T cell-mediated, tumor antigen-specific immune responses, play a pivotal role in the assessment process. This highlights the considerable promise of immunotherapies, monoclonal antibodies, and an array of biotechnological products in a relentless battle against cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096346735250218110708
2025-03-06
2025-05-25
Loading full text...

Full text loading...

References

  1. Rezaei N. Aalaei-Andabili S.H. Kaufman H.L. Introduction on cancer immunology and immunotherapy. Cancer. Immunology. Springer 2020 1 9 10.1007/978‑3‑030‑30845‑2_1
    [Google Scholar]
  2. Colin R. Kristiansen B. Basic biotechnology. Cambridge University Press 2006 10.1017/CBO9780511802409
    [Google Scholar]
  3. Dranoff G. Cancer immunology and immunotherapy. Curr. Top. Microbiol. Immunol. 2011 344 10.1007/978‑3‑642‑14136‑2
    [Google Scholar]
  4. Liu D. Che X. Wang X. Ma C. Wu G. Tumor vaccines: Unleashing the power of the immune system to fight cancer. Pharmaceuticals 2023 16 10 1384 10.3390/ph16101384 37895855
    [Google Scholar]
  5. Markovic S.N. Kumar A.B. Therapeutic targets of FDA-approved immunotherapies in oncology. The Basics of Cancer Immunotherapy. Springer 2018 10.1007/978‑3‑319‑70622‑1_2
    [Google Scholar]
  6. Mishra V. Kesharwani P. Mohd Amin M.C.I. Iyer A. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic Press 2017
    [Google Scholar]
  7. El-Tanani M. Nsairat H. Matalka I.I. Aljabali A.A.A. Mishra V. Mishra Y. Naikoo G.A. Chava S.R. Charbe N.B. Tambuwala M.M. Impact of exosome therapy on pancreatic cancer and its progression. Med. Oncol. 2023 40 8 225 10.1007/s12032‑023‑02101‑x 37405480
    [Google Scholar]
  8. Naikoo G.A. Arshad F. Almas M. Hassan I.U. Pedram M.Z. Aljabali A.A.A. Mishra V. Serrano-Aroca Á. Birkett M. Charbe N.B. Goyal R. Negi P. El-Tanani M. Tambuwala M.M. 2D materials, synthesis, characterization and toxicity: A critical review. Chem. Biol. Interact. 2022 365 110081 10.1016/j.cbi.2022.110081 35948135
    [Google Scholar]
  9. Kaur P. Mishra V. Shunmugaperumal T. Goyal A.K. Ghosh G. Rath G. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J. Drug Deliv. Sci. Technol. 2020 56 101502 10.1016/j.jddst.2020.101502
    [Google Scholar]
  10. Saluja V. Mankoo A. Saraogi G.K. Tambuwala M.M. Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J. Drug Deliv. Sci. Technol. 2019 52 15 26 10.1016/j.jddst.2019.04.014
    [Google Scholar]
  11. Dwivedi N. Shah J. Mishra V. Mohd Amin M.C.I. Iyer A.K. Tekade R.K. Kesharwani P. Dendrimer-mediated approaches for the treatment of brain tumor. J. Biomater. Sci. Polym. Ed. 2016 27 7 557 580 10.1080/09205063.2015.1133155 26928261
    [Google Scholar]
  12. Mishra V. Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov. Today 2016 21 5 766 778 10.1016/j.drudis.2016.02.006 26891979
    [Google Scholar]
  13. Jain N.K. Tare M.S. Mishra V. Tripathi P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine (Lond.) 2015 11 1 207 218 10.1016/j.nano.2014.09.006 25262579
    [Google Scholar]
  14. El-Tanani M. Platt-Higgins A. Lee Y.F. Al Khatib A.O. Haggag Y. Sutherland M. Zhang S.D. Aljabali A.A.A. Mishra V. Serrano-Aroca Á. Tambuwala M.M. Rudland P.S. Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci. 2022 310 121046 10.1016/j.lfs.2022.121046 36209829
    [Google Scholar]
  15. Mishra Y. Ranjan A. Mishra V. Chattaraj A. Aljabali A.A.A. El-Tanani M. Hromić-Jahjefendić A. Uversky V.N. Tambuwala M.M. The role of the gut microbiome in gastrointestinal cancers. Cell. Signal. 2024 115 111013 10.1016/j.cellsig.2023.111013 38113978
    [Google Scholar]
  16. El-Tanani M. Nsairat H. Mishra V. Mishra Y. Aljabali A.A.A. Serrano-Aroca Á. Tambuwala M.M. Ran GTPase and its importance in cellular signaling and malignant phenotype. Int. J. Mol. Sci. 2023 24 4 3065 10.3390/ijms24043065 36834476
    [Google Scholar]
  17. Mishra Y. Amin H.I.M. Mishra V. Vyas M. Prabhakar P.K. Gupta M. Kanday R. Sudhakar K. Saini S. Hromić-Jahjefendić A. Aljabali A.A.A. El-Tanani M. Serrano-Aroca Ã. Bakshi H. Tambuwala M.M. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed. Pharmacother. 2022 153 113413 10.1016/j.biopha.2022.113413 36076482
    [Google Scholar]
  18. Mishra Y. Mishra V. Tambuwala M.M. Tumor adhesion molecule targeting for breast cancer nanomedicine. Targeted Nanomedicine for Breast Cancer Therapy. Paliwal S.R. Paliwal R. Academic Press 2022 257 280 10.1016/B978‑0‑12‑824476‑0.00011‑5
    [Google Scholar]
  19. Ajmeera D. Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis. 2024 11 1 148 175 10.1016/j.gendis.2022.12.013 37588226
    [Google Scholar]
  20. Khan R. Arshad F. Hassan I.U. Naikoo G.A. Pedram M.Z. Zedegan M.S. Pourfarzad H. Aljabali A.A.A. Serrano-Aroca Á. Haggag Y. Mishra V. Mishra Y. Birkett M. Tambuwala M.M. Advances in nanomaterial-based immunosensors for prostate cancer screening. Biomed. Pharmacother. 2022 155 113649 10.1016/j.biopha.2022.113649 36108389
    [Google Scholar]
  21. Mishra Y. Mishra V. Ranjan A. 2024 10.1063/5.0192644
  22. Srivastava N. Mishra Y. Mishra V. Ranjan A. Tambuwala M.M. Carbon nanotubes in breast cancer treatment: An insight into properties, functionalization, and toxicity. Anticancer. Agents Med. Chem. 2023 23 14 1606 1617 10.2174/1871520623666230510094850 37165493
    [Google Scholar]
  23. Shepard H.M. Phillips G.L. Thanos C.D. Feldmann M. Developments in therapy with monoclonal antibodies and related proteins. Clin. Med. (Lond.) 2017 17 3 220 232 10.7861/clinmedicine.17‑3‑220 28572223
    [Google Scholar]
  24. Wahid B. Ali A. Rafique S. Waqar M. Wasim M. Wahid K. Idrees M. An overview of cancer immunotherapeutic strategies. Immunotherapy 2018 10 11 999 1010 10.2217/imt‑2018‑0002 30149763
    [Google Scholar]
  25. Chen M. Mao A. Xu M. Weng Q. Mao J. Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett. 2019 447 48 55 10.1016/j.canlet.2019.01.017 30684591
    [Google Scholar]
  26. Hassanpour S.H. Dehghani M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017 4 4 127 129 10.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  27. Butterfield H.L. Howard K.L. Marincola F.M. Cancer Immunotherapy Principles and Practice; Butterfield, L.H.; Kaufman, H.L. Marincola F.M. Springer 2017 10.1891/9781617052736
    [Google Scholar]
  28. Wilson A. Ensign G. Flyte K. Moore M. Ratliff K. Physical agents for cancer survivors: An updated literature review. Rehabil. Oncol. 2018 36 2 132 140 10.1097/01.REO.0000000000000081
    [Google Scholar]
  29. Khan M.S. Khan I.A. Barh D. Applied molecular biotechnology: The next generation of genetic engineering. CRC Press 2016 10.1201/b19543
    [Google Scholar]
  30. Borden E.C. Bradley E.C. Evans C.H. Fox C.F. Metzgar R.S. Mitchell M.S. Weinstein J.N. Biotechnology products in cancer therapy: A colloquium. Cancer Res. 1988 48 1 223 225 3275492
    [Google Scholar]
  31. Kwon M. Jung H. Nam G.H. Kim I.S. The right Timing, right combination, right sequence, and right delivery for Cancer immunotherapy. J. Control. Release 2021 331 321 334 10.1016/j.jconrel.2021.01.009 33434599
    [Google Scholar]
  32. Weiner L.M. Surana R. Wang S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010 10 5 317 327 10.1038/nri2744 20414205
    [Google Scholar]
  33. Onal C. Guler O.C. Advanced radiotherapy techniques in prostate cancer. Urol. Pract. 2017 273 291 10.1007/978‑3‑319‑56114‑1_16
    [Google Scholar]
  34. Golub E.S. Monoclonal Antibodies. Elsevier 2013 10.1016/B978‑0‑12‑374984‑0.00969‑4
    [Google Scholar]
  35. Hargadon K.M. Johnson C.E. Williams C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018 62 29 39 10.1016/j.intimp.2018.06.001 29990692
    [Google Scholar]
  36. Singh S. Numan A. Maddiboyina B. Arora S. Riadi Y. Md S. Alhakamy N.A. Kesharwani P. The emerging role of immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Drug Discov. Today 2021 26 7 1721 1727 10.1016/j.drudis.2021.03.011 33745879
    [Google Scholar]
  37. Walsh R.J. Tan D.S.P. The role of immunotherapy in the treatment of advanced cervical cancer: Current status and future perspectives. J. Clin. Med. 2021 10 19 4523 10.3390/jcm10194523 34640541
    [Google Scholar]
  38. Tauriello D.V.F. Palomo-Ponce S. Stork D. Berenguer-Llergo A. Badia-Ramentol J. Iglesias M. Sevillano M. Ibiza S. Cañellas A. Hernando-Momblona X. Byrom D. Matarin J.A. Calon A. Rivas E.I. Nebreda A.R. Riera A. Attolini C.S.O. Batlle E. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018 554 7693 538 543 10.1038/nature25492 29443964
    [Google Scholar]
  39. Greten T.F. Mauda-Havakuk M. Heinrich B. Korangy F. Wood B.J. Combined locoregional-immunotherapy for liver cancer. J. Hepatol. 2019 70 5 999 1007 10.1016/j.jhep.2019.01.027 30738077
    [Google Scholar]
  40. Mahler S. Safety of biologics therapy: Monoclonal antibodies, cytokines, fusion proteins, hormones, enzymes, coagulation proteins, vaccines, botulinum toxins. MAbs 2017 9 6 885 888 10.1080/19420862.2017.1343709 28678617
    [Google Scholar]
  41. Santoni M. Massari F. Di Nunno V. Conti A. Cimadamore A. Scarpelli M. Montironi R. Cheng L. Battelli N. Lopez-Beltran A. Immunotherapy in renal cell carcinoma: Latest evidence and clinical implications. Drugs Context 2018 7 1 8 10.7573/dic.212528 29899754
    [Google Scholar]
  42. Paulson K.G. Lahman M.C. Chapuis A.G. Brownell I. Immunotherapy for skin cancer. Int. Immunol. 2019 31 7 465 475 10.1093/intimm/dxz012 30753483
    [Google Scholar]
  43. Hanna C.R. O’Cathail S.M. Graham J. Adams R. Roxburgh C.S.D. Immune checkpoint inhibition as a strategy in the neoadjuvant treatment of locally advanced rectal cancer. J. Immunother. Precis. Oncol. 2021 4 2 86 104 10.36401/JIPO‑20‑31 35663532
    [Google Scholar]
  44. Delves P.J. Book Review: Monoclonal antibodies: Principles and practice. J. R. Soc. Med. 1985 78 12 1072 1072 10.1177/014107688507801232
    [Google Scholar]
  45. Jia N. Patel D.J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 2021 22 8 563 579 10.1038/s41580‑021‑00371‑9 34089013
    [Google Scholar]
  46. Sharma P. Joshi R.V. Pritchard R. Xu K. Eicher M.A. Therapeutic antibodies in medicine. Molecules 2023 28 18 6438 10.3390/molecules28186438 37764213
    [Google Scholar]
  47. McCurdy D. Parsa M.F. Updates in juvenile idiopathic arthritis. Adv. Pediatr. 2021 68 143 170 10.1016/j.yapd.2021.05.014 34243850
    [Google Scholar]
  48. Thura M. Ye Z. Al-Aidaroos A.Q. Xiong Q. Ong J.Y. Gupta A. Li J. Guo K. Ang K.H. Zeng Q. PRL3 induces polyploid giant cancer cells eliminated by PRL3-zumab to reduce tumor relapse. Commun. Biol. 2021 4 1 923 10.1038/s42003‑021‑02449‑8 34326464
    [Google Scholar]
  49. Bayer V. An overview of monoclonal antibodies. Semin. Oncol. Nurs. 2019 35 5 150927 10.1016/j.soncn.2019.08.006 31488319
    [Google Scholar]
  50. Kumar M. Thangavel C. Becker R.C. Sadayappan S. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers (Basel) 2020 13 1 86 10.3390/cancers13010086 33396766
    [Google Scholar]
  51. Choudhury N. Nakamura Y. Importance of immunopharmacogenomics in cancer treatment: Patient selection and monitoring for immune checkpoint antibodies. Cancer Sci. 2016 107 2 107 115 10.1111/cas.12862 26678880
    [Google Scholar]
  52. Shanehbandi D. Majidi J. Kazemi T. Baradaran B. Aghebati-Maleki L. CD20-based immunotherapy of B-cell derived hematologic malignancies. Curr. Cancer Drug Targets 2017 17 5 423 444 10.2174/1568009617666170109151128 28067179
    [Google Scholar]
  53. Zinn S. Vazquez-Lombardi R. Zimmermann C. Sapra P. Jermutus L. Christ D. Advances in antibody-based therapy in oncology. Nat. Can. 2023 4 2 165 180 10.1038/s43018‑023‑00516‑z 36806801
    [Google Scholar]
  54. Melamed M.D. Bradley C.E. Monoclonal antibodies. Curr. Opin. Immunol. 1989 1 5 929 936 10.1016/0952‑7915(89)90075‑7 2679742
    [Google Scholar]
  55. Shao K. Singha S. Clemente-Casares X. Tsai S. Yang Y. Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015 9 1 16 30 10.1021/nn5062029 25469470
    [Google Scholar]
  56. Carballido E. Veliz M. Komrokji R. Pinilla-Ibarz J. Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Contr. 2012 19 1 54 67 10.1177/107327481201900106 22143062
    [Google Scholar]
  57. Connors J.M. Jurczak W. Straus D.J. Ansell S.M. Kim W.S. Gallamini A. Younes A. Alekseev S. Illés Á. Picardi M. Lech-Maranda E. Oki Y. Feldman T. Smolewski P. Savage K.J. Bartlett N.L. Walewski J. Chen R. Ramchandren R. Zinzani P.L. Cunningham D. Rosta A. Josephson N.C. Song E. Sachs J. Liu R. Jolin H.A. Huebner D. Radford J. Brentuximab Vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 2018 378 4 331 344 10.1056/NEJMoa1708984 29224502
    [Google Scholar]
  58. Arrieta O. Zatarain-Barrón Z.L. Cardona A.F. Carmona A. Lopez-Mejia M. Ramucirumab in the treatment of non-small cell lung cancer. Expert Opin. Drug Saf. 2017 16 5 637 644 10.1080/14740338.2017.1313226 28395526
    [Google Scholar]
  59. Guimaraes Koch S.S. Thorpe R. Kawasaki N. Lefranc M.P. Malan S. Martin A.C.R. Mignot G. Plückthun A. Rizzi M. Shubat S. Weisser K. Balocco R. International nonproprietary names for monoclonal antibodies: An evolving nomenclature system. MAbs 2022 14 1 2075078 10.1080/19420862.2022.2075078 35584276
    [Google Scholar]
  60. Lurain K. Ramaswami R. Mangusan R. Widell A. Ekwede I. George J. Ambinder R. Cheever M. Gulley J.L. Goncalves P.H. Wang H.W. Uldrick T.S. Yarchoan R. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin’s lymphoma. J. Immunother. Cancer 2021 9 2 e002097 10.1136/jitc‑2020‑002097 33608378
    [Google Scholar]
  61. Ruhstaller T.W. Amsler U. Cerny T. Rituximab: Active treatment of central nervous system involvement by non-Hodgkin’s lymphoma? Ann. Oncol. 2000 11 3 374 375 10.1023/A:1008371602708 10811510
    [Google Scholar]
  62. Vermorken J.B. Mesia R. Rivera F. Remenar E. Kawecki A. Rottey S. Erfan J. Zabolotnyy D. Kienzer H.R. Cupissol D. Peyrade F. Benasso M. Vynnychenko I. De Raucourt D. Bokemeyer C. Schueler A. Amellal N. Hitt R. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008 359 11 1116 1127 10.1056/NEJMoa0802656 18784101
    [Google Scholar]
  63. Cathomas R. Rothermundt C. Klingbiel D. Bubendorf L. Jaggi R. Betticher D.C. Brauchli P. Cotting D. Droege C. Winterhalder R. Siciliano D. Berthold D.R. Pless M. Schiess R. von Moos R. Gillessen S. Efficacy of cetuximab in metastatic castration-resistant prostate cancer might depend on EGFR and PTEN expression: Results from a phase II trial (SAKK 08/07). Clin. Cancer Res. 2012 18 21 6049 6057 10.1158/1078‑0432.CCR‑12‑2219 22977195
    [Google Scholar]
  64. Iglesias P. Díez J.J. Thyroid dysfunction and kidney disease. Eur. J. Endocrinol. 2009 160 4 503 515 10.1530/EJE‑08‑0837 19095779
    [Google Scholar]
  65. Castelli M.S. McGonigle P. Hornby P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019 7 6 e00535 10.1002/prp2.535 31859459
    [Google Scholar]
  66. Olga G. Irina U. Zuhra H. Al’Bina B. Clinical manifestations of oral mucosal lesions in verious dermatosis. Actual. Prob. Dentistry. 2020 16 1 5 13
    [Google Scholar]
  67. Lobenwein D. Kocher F. Dobner S. Gollmann-Tepeköylü C. Holfeld J. Cardiotoxic mechanisms of cancer immunotherapy: A systematic review. Int. J. Cardiol. 2021 323 179 187 10.1016/j.ijcard.2020.08.033 32800915
    [Google Scholar]
  68. Hafeez U. Gan H.K. Scott A.M. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr. Opin. Pharmacol. 2018 41 114 121 10.1016/j.coph.2018.05.010 29883853
    [Google Scholar]
  69. Mehren M. Adams G.P. Weiner L.M. Monoclonal antibody therapy for cancer. Annu. Rev. Med. 2003 54 1 343 369 10.1146/annurev.med.54.101601.152442 12525678
    [Google Scholar]
  70. Francescon S. Fornasier G. Baldo P. EU pharmacovigilance regulatory requirements of anticancer biosimilar monoclonal antibodies. Int. J. Clin. Pharm. 2018 40 4 778 782 10.1007/s11096‑018‑0709‑6 30094558
    [Google Scholar]
  71. Bohra C. Sokol L. Dalia S. Progressive multifocal leukoencephalopathy and monoclonal antibodies. Cancer Contr. 2017 24 4 10.1177/1073274817729901 28975841
    [Google Scholar]
  72. Carr D.F. Pirmohamed M. Biomarkers of adverse drug reactions. Exp. Biol. Med. (Maywood) 2018 243 3 291 299 10.1177/1535370217733425 28950720
    [Google Scholar]
  73. Krishna M. Nadler S.G. Immunogenicity to biotherapeutics: The role of anti-drug immune complexes. Front. Immunol. 2016 7 21 10.3389/fimmu.2016.00021 26870037
    [Google Scholar]
  74. Cleres L. de Ávila R.I. Lima E.M. Toxicology in vitrosafety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermo cosmetic product. Toxicol. Vitr 2016 45 397 408 10.1016/j.tiv.2017.04.002
    [Google Scholar]
  75. Corvi R. Madia F. Guyton K.Z. Kasper P. Rudel R. Colacci A. Kleinjans J. Jennings P. Moving forward in carcinogenicity assessment: Report of an EURL ECVAM/ESTIV workshop. In Vitro Toxicol. 2017 45 45 278 286 10.1016/j.tiv.2017.09.010
    [Google Scholar]
  76. Varmus H. Targeting MYC proteins for tumor therapy. Annu. Rev. Cancer Biol. 2020 4 1 41 57 10.1146/annurev‑cancerbio‑050216‑034315
    [Google Scholar]
  77. Hersh E. Gschwind C. Morris D. Murphy S. Deficient strongly adherent monocytes in the peripheral blood of cancer patients. Cancer Immunol. Immunother. 1982 14 2 105 109 10.1007/BF00200177 6965225
    [Google Scholar]
  78. Sherr C.J. Bartek J. Cell cycle-targeted cancer therapies. Annu. Rev. Cancer Biol. 2017 1 1 41 57 10.1146/annurev‑cancerbio‑040716‑075628
    [Google Scholar]
  79. Varmus H. How tumor virology evolved into cancer biology and transformed oncology. Annu. Rev. Cancer Biol. 2017 1 1 1 18 10.1146/annurev‑cancerbio‑050216‑034315
    [Google Scholar]
  80. Sayers T.J. Principles of Stem Cell Biology and Cancer: Future Applications and Therapeutics. Wiley 2015 10.1002/9781118670613
    [Google Scholar]
  81. Coleman K.G. Crews C.M. Proteolysis-targeting chimeras: Harnessing the ubiquitin-proteasome system to induce degradation of specific target proteins. Annu. Rev. Cancer Biol. 2018 2 1 41 58 10.1146/annurev‑cancerbio‑030617‑050430
    [Google Scholar]
  82. Pan K. Farrukh H. Chittepu V.C.S.R. Xu H. Pan C. Zhu Z. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res. 2022 41 1 119 10.1186/s13046‑022‑02327‑z 35361234
    [Google Scholar]
  83. Verstraete M. Debucquoy A. Dekervel J. van Pelt J. Verslype C. Devos E. Chiritescu G. Dumon K. D’Hoore A. Gevaert O. Sagaert X. Van Cutsem E. Haustermans K. Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial. Br. J. Cancer 2015 112 8 1314 1325 10.1038/bjc.2015.93 25867261
    [Google Scholar]
  84. Wagener C. Stocking C. Müller O. Cancer Signaling: From Molecular Biology to Targeted Therapy. Wiley-Blackwell 2016
    [Google Scholar]
  85. Cavo M. Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia 2006 20 8 1341 1352 10.1038/sj.leu.2404278 16810203
    [Google Scholar]
  86. Scappini B. Onida F. Kantarjian H.M. Dong L. Verstovsek S. Keating M.J. Beran M. Effects of signal transduction inhibitor 571 in acute myelogenous leukemia cells. Clin. Cancer Res. 2001 7 12 3884 3893 11751479
    [Google Scholar]
  87. Choe J.H. Williams J.Z. Lim W.A. Engineering T. Engineering T cells to treat cancer: The convergence of immuno-oncology and synthetic biology. Annu. Rev. Cancer Biol. 2020 4 1 121 139 10.1146/annurev‑cancerbio‑030419‑033657
    [Google Scholar]
  88. Tirosh I. Suvà M.L. Deciphering human tumor biology by single-cell expression profiling. Annu. Rev. Cancer Biol. 2019 3 1 151 166 10.1146/annurev‑cancerbio‑030518‑055609
    [Google Scholar]
  89. Metcalfe C. Friedman L.S. Hager J.H. Hormone-targeted therapy and resistance. Annu. Rev. Cancer Biol. 2018 2 1 291 312 10.1146/annurev‑cancerbio‑030617‑050512
    [Google Scholar]
  90. Stacker S.A. Sacks N.P.M. Thompson C.H. Immunological Approaches to the Diagnosis and Therapy of Breast Cancer. Springer 1987 217 227 10.1007/978‑1‑4613‑1903‑0
    [Google Scholar]
  91. Hershman D.L. Tsui J. Meyer J. Glied S. Hillyer G.C. Wright J.D. Neugut A.I. The change from brand-name to generic aromatase inhibitors and hormone therapy adherence for early-stage breast cancer. J. Natl. Cancer Inst. 2014 106 11 319 10.1093/jnci/dju319 25349080
    [Google Scholar]
  92. Howell S.J. Johnston S.R.D. Howell A. The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2004 18 1 47 66 10.1016/j.beem.2003.08.002 14687597
    [Google Scholar]
  93. Johnston S.R.D. New strategies in estrogen receptor-positive breast cancer. Clin. Cancer Res. 2010 16 7 1979 1987 10.1158/1078‑0432.CCR‑09‑1823 20332324
    [Google Scholar]
  94. Nicosia L. Bucpapaj R. Barresi V. Damante R. Napoli G. Ghimenton C. Giaj-Levra N. Cancedda M. Flaminio S. Figlia V. Alongi F. Resected atypical meningioma relapsed to anaplastic meningioma during luteinizing hormone-releasing hormone agonist therapy. Neurochirurgie 2021 67 2 193 197 10.1016/j.neuchi.2020.10.002 33190809
    [Google Scholar]
  95. Breast Cancer: Treating Breast Cancer American Cancer Society 2019
    [Google Scholar]
  96. Gravis G. Boher J.M. Joly F. Soulié M. Albiges L. Priou F. Latorzeff I. Delva R. Krakowski I. Laguerre B. Rolland F. Théodore C. Deplanque G. Ferrero J.M. Culine S. Mourey L. Beuzeboc P. Habibian M. Oudard S. Fizazi K. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: Impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 Trial. Eur. Urol. 2016 70 2 256 262 10.1016/j.eururo.2015.11.005 26610858
    [Google Scholar]
  97. Vasaitis T.S. Bruno R.D. Njar V.C.O. CYP17 inhibitors for prostate cancer therapy. J. Steroid Biochem. Mol. Biol. 2011 125 1-2 23 31 10.1016/j.jsbmb.2010.11.005 21092758
    [Google Scholar]
  98. Rocca W.A. Grossardt B.R. Shuster L.T. Oophorectomy, estrogen, and dementia: A 2014 update. Mol. Cell. Endocrinol. 2014 389 1-2 7 12 10.1016/j.mce.2014.01.020 24508665
    [Google Scholar]
  99. Parker C. Treating prostate cancer. BMJ 2012 345 (aug01 1) e5122
    [Google Scholar]
  100. Saad F. Adachi J.D. Brown J.P. Canning L.A. Gelmon K.A. Josse R.G. Pritchard K.I. Cancer treatment-induced bone loss in breast and prostate cancer. J. Clin. Oncol. 2008 26 33 5465 5476 10.1200/JCO.2008.18.4184 18955443
    [Google Scholar]
  101. Xu S. Yu S. Dong D. Lee L.T.O.G. Protein-coupled estrogen receptor: A potential therapeutic target in cancer. Front. Endocrinol. (Lausanne) 2019 10 725 10.3389/fendo.2019.00725 31708873
    [Google Scholar]
  102. Johnson C.J. Hormone therapy. Neurology 1996 46 5 1496 10.1212/WNL.46.5.1496
    [Google Scholar]
  103. Conlon K.C. Miljkovic M.D. Waldmann T.A. Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 2019 39 1 6 21 10.1089/jir.2018.0019 29889594
    [Google Scholar]
  104. Kalvakolanu D.V. The “Yin-Yang” of cytokines in cancer. Cytokine 2019 118 1 2 10.1016/j.cyto.2018.12.013 30712967
    [Google Scholar]
  105. Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 2018 10 12 1 23 10.1101/cshperspect.a028472
    [Google Scholar]
  106. Witsch E. Sela M. Yarden Y. Roles for growth factors in cancer progression. Physiology (Bethesda) 2010 25 2 85 101 10.1152/physiol.00045.2009 20430953
    [Google Scholar]
  107. Shahbazi Dastjerdeh M. Shokrgozar M.A. Rahimi H. Golkar M. Potential aggregation hot spots in recombinant human keratinocyte growth factor: A computational study. J. Biomol. Struct. Dyn. 2022 40 18 8169 8184 10.1080/07391102.2021.1908912
    [Google Scholar]
  108. Liu S. Ren J. ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 8 10.1038/s41392‑020‑00436‑9 33414388
    [Google Scholar]
  109. Kaufman N.E.M. Dhingra S. Jois S.D. Vicente M.G.H. Molecular targeting of epidermal growth factor receptor (Egfr) and vascular endothelial growth factor receptor. Molecules 2021 26 4 1076 10.3390/molecules26041076 33670650
    [Google Scholar]
  110. Yunusova N.V. Kondakova I.V. Kolomiets L.A. Afanas’ev S.G. Chernyshova A.L. Kudryavtsev I.V. Tsydenova A.A. Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors). Asia Pac. J. Clin. Oncol. 2018 14 3 134 140 10.1111/ajco.12780 29115033
    [Google Scholar]
  111. Jonnalagadda B. Arockiasamy S. Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci. 2020 259 118208 10.1016/j.lfs.2020.118208 32763294
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096346735250218110708
Loading
/content/journals/ccdt/10.2174/0115680096346735250218110708
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune system ; biotechnology ; Immunotherapy ; monoclonal antibodies ; immunotherapeutics ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test