Skip to content
2000
image of The COX-2 Inhibitor Celecoxib Sensitizes Nasopharyngeal Carcinoma Cells to Ferroptosis

Abstract

Background

Nasopharyngeal cancer [NPC] is prevalent in Southeast Asia and North Africa, and is generally associated with limited treatment options and poor patient prognosis.

Objective

Ferroptosis is a recently observed cell death modality and has been shown to link to the efficacy of different anti-cancer treatments, thus offering opportunities for the development of novel therapies. This study aims to investigate the potentiating effects of COX-2 inhibitors on ferroptosis in nasopharyngeal cancer.

Methods

The inhibitory effects of COX-2 inhibitors celecoxib and rofecoxib on nasopharyngeal cancer cells were assessed with MTT, colony formation, sphere formation, Transwell, and wound healing assays. The status of COX-2 with celecoxib and rofecoxib treatment was investigated by Western blotting and immunofluorescence experiments. Ferroptosis was induced with the GPX4 inhibitor RSL3 with or without COX-2 inhibition and was monitored by fluorescence microscopy. Transcriptomic profiling was conducted with 5-8F cells treated with DMSO as control or celecoxib, and ferroptosis-related candidates were validated by RT-PCR analysis.

Results

Celecoxib and rofecoxib effectively inhibited the growth and migration of nasopharyngeal cancer cells. Both inhibitors evidently sensitized nasopharyngeal cancer cells to ferroptosis induction by RSL3, with celecoxib outperforming rofecoxib. Celecoxib treatment resulted in significantly differentially expressed genes in 5-8F cells, among which CHAC1 was validated as a ferroptosis-related target.

Conclusion

The COX-2 inhibitor celecoxib effectively sensitized nasopharyngeal cancer cells to ferroptosis induction.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096337720241030055036
2025-01-06
2025-06-26
Loading full text...

Full text loading...

References

  1. Petersson F. Nasopharyngeal carcinoma: A review. Semin. Diagn. Pathol. 2015 32 1 54 73 10.1053/j.semdp.2015.02.021 25769204
    [Google Scholar]
  2. Guo X. Johnson R.C. Deng H. Liao J. Guan L. Nelson G.W. Tang M. Zheng Y. The D.G. O’Brien S.J. Winkler C.A. Zeng Y. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high‐risk population of Southern China. Int. J. Cancer 2009 124 12 2942 2947 10.1002/ijc.24293 19296536
    [Google Scholar]
  3. Chen Y.P. Chan A.T.C. Le Q.T. Blanchard P. Sun Y. Ma J. Nasopharyngeal carcinoma. Lancet 2019 394 10192 64 80 10.1016/S0140‑6736(19)30956‑0 31178151
    [Google Scholar]
  4. Liu Z. Chang E.T. Liu Q. Cai Y. Zhang Z. Chen G. Xie S.H. Cao S.M. Shao J.Y. Jia W.H. Zheng Y. Liao J. Chen Y. Ernberg I. Vaughan T.L. Adami H.O. Huang G. Zeng Y. Zeng Y.X. Ye W. Oral hygiene and risk of nasopharyngeal carcinoma—A population-based case–control study in China. Cancer Epidemiol. Biomarkers Prev. 2016 25 8 1201 1207 10.1158/1055‑9965.EPI‑16‑0149 27197279
    [Google Scholar]
  5. Tan W.L. Tan E.H. Lim D.W.T. Ng Q.S. Tan D.S.W. Jain A. Ang M.K. Advances in systemic treatment for nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016 5 2 21 10.21037/cco.2016.03.03 27121881
    [Google Scholar]
  6. Paiar F. Cataldo D.V. Zei G. Pasquetti M.E. Cecchini S. Meattini I. Mangoni M. Agresti B. Iermano C. Bonomo P. Biti G. Role of chemotherapy in nasopharyngeal carcinoma. Oncol. Rev. 2012 6 1 1 10.4081/oncol.2012.e1 25992199
    [Google Scholar]
  7. Guo R. Mao Y.P. Tang L.L. Chen L. Sun Y. Ma J. The evolution of nasopharyngeal carcinoma staging. Br. J. Radiol. 2019 92 1102 20190244 10.1259/bjr.20190244 31298937
    [Google Scholar]
  8. Tseng M. Ho F. Leong Y.H. Wong L.C. Tham I.W.K. Cheo T. Lee A.W.M. Emerging radiotherapy technologies and trends in nasopharyngeal cancer. Cancer Commun. 2020 40 9 395 405 10.1002/cac2.12082 32745354
    [Google Scholar]
  9. Almobarak A.A. Jebreel A.B. Zaid A.A. Molecular targeted therapy in the management of recurrent and metastatic nasopharyngeal carcinoma: A comprehensive literature review. Cureus 2019 11 3 e4210 10.7759/cureus.4210 31114729
    [Google Scholar]
  10. Huang H. Yao Y. Deng X. Huang Z. Chen Y. Wang Z. Hong H. Huang H. Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int. J. Oncol. 2023 63 2 97 10.3892/ijo.2023.5545 37417358
    [Google Scholar]
  11. Liu H. Tang L. Li Y. Xie W. Zhang L. Tang H. Xiao T. Yang H. Gu W. Wang H. Chen P. Nasopharyngeal carcinoma: Current views on the tumor microenvironment’s impact on drug resistance and clinical outcomes. Mol. Cancer 2024 23 1 20 10.1186/s12943‑023‑01928‑2 38254110
    [Google Scholar]
  12. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  13. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  14. Tang D. Chen X. Kang R. Kroemer G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021 31 2 107 125 10.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  15. Li Z. Chen L. Chen C. Zhou Y. Hu D. Yang J. Chen Y. Zhuo W. Mao M. Zhang X. Xu L. Wang L. Zhou J. Targeting ferroptosis in breast cancer. Biomark. Res. 2020 8 1 58 10.1186/s40364‑020‑00230‑3 33292585
    [Google Scholar]
  16. Wu S. Zhu C. Tang D. Dou Q.P. Shen J. Chen X. The role of ferroptosis in lung cancer. Biomark. Res. 2021 9 1 82 10.1186/s40364‑021‑00338‑0 34742351
    [Google Scholar]
  17. Lei G. Mao C. Yan Y. Zhuang L. Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021 12 11 836 857 10.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  18. Lei G. Zhuang L. Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022 22 7 381 396 10.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  19. Liang X. You Z. Chen X. Li J. Targeting ferroptosis in colorectal cancer. Metabolites 2022 12 8 745 10.3390/metabo12080745 36005616
    [Google Scholar]
  20. Chen X. Kang R. Kroemer G. Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021 18 5 280 296 10.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  21. Wang H. Lin D. Yu Q. Li Z. Lenahan C. Dong Y. Wei Q. Shao A. A promising future of ferroptosis in tumor therapy. Front. Cell Dev. Biol. 2021 9 629150 10.3389/fcell.2021.629150 34178977
    [Google Scholar]
  22. Zhang H.L. Hu B.X. Li Z.L. Du T. Shan J.L. Ye Z.P. Peng X.D. Li X. Huang Y. Zhu X.Y. Chen Y.H. Feng G.K. Yang D. Deng R. Zhu X.F. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol. 2022 24 1 88 98 10.1038/s41556‑021‑00818‑3 35027735
    [Google Scholar]
  23. Huang S. Cao B. Zhang J. Feng Y. Wang L. Chen X. Su H. Liao S. Liu J. Yan J. Liang B. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis. 2021 12 3 237 10.1038/s41419‑021‑03516‑y 33664249
    [Google Scholar]
  24. Rouzer CA Marnett LJ Cyclooxygenases: Structural and functional insights. J. Lip. Res. 2009 50 S29 34 10.1194/jlr.R800042‑JLR200
    [Google Scholar]
  25. Chandrasekharan N.V. Simmons D.L. The cyclooxygenases. Genome Biol. 2004 5 9 241 10.1186/gb‑2004‑5‑9‑241 15345041
    [Google Scholar]
  26. Zhu Y. Shi C. Zeng L. Liu G. Jiang W. Zhang X. Chen S. Guo J. Jian X. Ouyang J. Xia J. Kuang C. Fan S. Wu X. Wu Y. Zhou W. Guan Y. High COX‐2 expression in cancer‐associated fibiroblasts contributes to poor survival and promotes migration and invasiveness in nasopharyngeal carcinoma. Mol. Carcinog. 2020 59 3 265 280 10.1002/mc.23150 31867776
    [Google Scholar]
  27. Shi C. Guan Y. Zeng L. Liu G. Zhu Y. Xu H. Lu Y. Liu J. Guo J. Feng X. Zhao X. Jiang W. Li G. Li G. Dai Y. Jin F. Li W. Zhou W. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int. J. Oncol. 2018 53 3 1138 1148 10.3892/ijo.2018.4462 29956730
    [Google Scholar]
  28. Rodrigues P. Bangali H. Hammoud A. Mustafa Y.F. Hetty A.H.R.A.K. Alkhafaji A.T. Deorari M.M. Taee A.M.M. Zabibah R.S. Alsalamy A. COX 2-inhibitors; A thorough and updated survey into combinational therapies in cancers. Med. Oncol. 2024 41 1 41 10.1007/s12032‑023‑02256‑7 38165473
    [Google Scholar]
  29. Evans J. Kargman S. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr. Pharm. Des. 2004 10 6 627 634 10.2174/1381612043453126 14965325
    [Google Scholar]
  30. Xie X.Q. Luo Y. Ma X.L. Li S.S. Liu L. Zhang H. Li P. Wang F. Clinical significance of circulating tumor cells and their expression of cyclooxygenase-2 in patients with nasopharyngeal carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2019 23 16 6951 6961 31486495
    [Google Scholar]
  31. Chen P.Y. Long Q.C. Effects of cyclooxygenase 2 inhibitors on biological traits of nasopharyngeal carcinoma cells. Acta Pharmacol. Sin. 2004 25 7 943 949 15210070
    [Google Scholar]
  32. Murono S. Inoue H. Tanabe T. Joab I. Yoshizaki T. Furukawa M. Pagano J.S. Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc. Natl. Acad. Sci. 2001 98 12 6905 6910 10.1073/pnas.121016998 11381123
    [Google Scholar]
  33. Li Z.L. Ye S.B. OuYang L.Y. Zhang H. Chen Y.S. He J. Chen Q.Y. Qian C.N. Zhang X.S. Cui J. Zeng Y.X. Li J. COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Onco. Immunol. 2015 4 11 e1044712 10.1080/2162402X.2015.1044712 26451317
    [Google Scholar]
  34. Yang G. Deng Q. Fan W. Zhang Z. Xu P. Tang S. Wang P. Wang J. Yu M. Cyclooxygenase-2 expression is positively associated with lymph node metastasis in nasopharyngeal carcinoma. PLoS One 2017 12 3 e0173641 10.1371/journal.pone.0173641 28301518
    [Google Scholar]
  35. Chen B. Chen Z. Liu M. Gao X. Cheng Y. Wei Y. Wu Z. Cui D. Shang H. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res. Bull. 2019 153 122 132 10.1016/j.brainresbull.2019.08.013 31442590
    [Google Scholar]
  36. Wang S. Wang T. Zhang X. Cheng S. Chen C. Yang G. Wang F. Wang R. Zhang Q. Yang D. Zhang Y. Liu S. Qin H. Liu Q. Liu H. The deubiquitylating enzyme USP35 restricts regulated cell death to promote survival of renal clear cell carcinoma. Cell Death Differ. 2023 30 7 1757 1770 10.1038/s41418‑023‑01176‑3 37173391
    [Google Scholar]
  37. Liu S. Wang T. Shi Y. Bai L. Wang S. Guo D. Zhang Y. Qi Y. Chen C. Zhang J. Zhang Y. Liu Q. Yang Q. Wang Y. Liu H. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 2021 28 8 2482 2498 10.1038/s41418‑021‑00763‑6 33731873
    [Google Scholar]
  38. Sun Q. Zhang J. Li X. Yang G. Cheng S. Guo D. Zhang Q. Sun F. Zhao F. Yang D. Wang S. Wang T. Liu S. Zou L. Zhang Y. Liu H. The ubiquitin-specific protease 8 antagonizes melatonin-induced endocytic degradation of MT1 receptor to promote lung adenocarcinoma growth. J. Adv. Res. 2022 41 1 12 10.1016/j.jare.2022.01.015 36328739
    [Google Scholar]
  39. Wu Y. Zhang Y. Wang D. Zhang Y. Zhang J. Zhang Y. Xu L. Wang T. Wang S. Zhang Q. Liu F. Zaky M.Y. Li Q. Sun Q. Guo D. Liu S. Zou L. Yang Q. Liu H. USP29 enhances chemotherapy-induced stemness in non-small cell lung cancer via stabilizing Snail1 in response to oxidative stress. Cell Death Dis. 2020 11 9 796 10.1038/s41419‑020‑03008‑5 32968046
    [Google Scholar]
  40. Wang S. Zhang J. Wang T. Ren F. Liu X. Lu Y. Xu L. Zhang Y. Wang D. Xu L. Wu Y. Liu F. Li Q. Zaky M.Y. Liu S. Dong W. Liu F. Zou K. Zhang Y. Endocytic degradation of ErbB2 mediates the effectiveness of neratinib in the suppression of ErbB2-positive ovarian cancer. Int. J. Biochem. Cell Biol. 2019 117 105640 10.1016/j.biocel.2019.105640 31689531
    [Google Scholar]
  41. Parande D. Suyal S. Bachhawat A.K. ChaC1 upregulation reflects poor prognosis in a variety of cancers: Analysis of the major missense SNPs of ChaC1 as an aid to refining prognosis. Gene 2024 913 148386 10.1016/j.gene.2024.148386 38499213
    [Google Scholar]
  42. Wang Y. Pang X. Liu Y. Mu G. Wang Q. SOCS1 acts as a ferroptosis driver to inhibit the progression and chemotherapy resistance of triple-negative breast cancer. Carcinogenesis 2023 44 8-9 708 715 10.1093/carcin/bgad060 37665951
    [Google Scholar]
  43. Liu J. Song X. Kuang F. Zhang Q. Xie Y. Kang R. Kroemer G. Tang D. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 2021 12 1 647 10.1038/s41467‑021‑20904‑2 33510144
    [Google Scholar]
  44. Wu A. Feng B. Yu J. Yan L. Che L. Zhuo Y. Luo Y. Yu B. Wu D. Chen D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol. 2021 46 102131 10.1016/j.redox.2021.102131 34530349
    [Google Scholar]
  45. Dächert J. Ehrenfeld V. Habermann K. Dolgikh N. Fulda S. Targeting ferroptosis in rhabdomyosarcoma cells. Int. J. Cancer 2020 146 2 510 520 10.1002/ijc.32496 31173656
    [Google Scholar]
  46. Fang W Liu J Zhang F Pang C Li X. A novel cholesterol metabolism-related ferroptosis pathway in hepatocellular carcinoma. Dis. Oncol. 2024 15 1 7
    [Google Scholar]
  47. Shan Y. Guan C. Wang J. Qi W. Chen A. Liu S. Impact of ferroptosis on preeclampsia: A review. Biomed. Pharmacother. 2023 167 115466 10.1016/j.biopha.2023.115466 37729725
    [Google Scholar]
  48. Wong K.C.W. Hui E.P. Lo K.W. Lam W.K.J. Johnson D. Li L. Tao Q. Chan K.C.A. To K.F. King A.D. Ma B.B.Y. Chan A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol. 2021 18 11 679 695 10.1038/s41571‑021‑00524‑x 34194007
    [Google Scholar]
  49. Guan S. Wei J. Huang L. Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur. J. Med. Chem. 2020 207 112758 10.1016/j.ejmech.2020.112758 32858472
    [Google Scholar]
  50. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  51. Tong X. Tang R. Xiao M. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022 15 1 174 10.1186/s13045‑022‑01392‑3 36482419
    [Google Scholar]
  52. Wendlocha D. Kubina R. Krzykawski K. Palacz M.A. Selected flavonols targeting cell death pathways in cancer therapy: The latest achievements in research on apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Nutrients 2024 16 8 1201 10.3390/nu16081201 38674891
    [Google Scholar]
  53. Gao W. Wang X. Zhou Y. Wang X. Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022 7 1 196 10.1038/s41392‑022‑01046‑3 35725836
    [Google Scholar]
  54. Stockwell B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022 185 14 2401 2421 10.1016/j.cell.2022.06.003 35803244
    [Google Scholar]
  55. Dada L.G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 8 1893 1900 10.1016/j.bbagen.2017.05.019 28552631
    [Google Scholar]
  56. Roushandeh A.M. Roudkenar M.H. Valashedi M.R. Nikoo A. Ghalehlou N.N. Tomita K. Kuwahara Y. Sato T. Pharmacological targeting of ferroptosis in cancer treatment. Curr. Can. Drug Targ. 2022 22 2 108 125 10.2174/1568009621666211202091523 34856903
    [Google Scholar]
  57. Yeung Y.T. Aziz F. Castilla G.A. Arguelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des. 2018 24 14 1449 1484 10.2174/1381612824666180327165604 29589535
    [Google Scholar]
  58. Vane J.R. Botting R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res. 1998 47 2 78 87 10.1007/s000110050284 9831328
    [Google Scholar]
  59. Hawkey C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol. 2001 15 5 801 820 10.1053/bega.2001.0236 11566042
    [Google Scholar]
  60. Iwaniuk T.N. Pakieła D.D. Nowaszewska B.K. Janowicz C.K. Miltyk W. Celecoxib in cancer therapy and prevention – Review. Curr. Drug Targets 2019 20 3 302 315 10.2174/1389450119666180803121737 30073924
    [Google Scholar]
  61. Goradel H.N. Najafi M. Salehi E. Farhood B. Mortezaee K. Cyclooxygenase‐2 in cancer: A review. J. Cell. Physiol. 2019 234 5 5683 5699 10.1002/jcp.27411 30341914
    [Google Scholar]
  62. Regulski M. Regulska K. Prukała W. Piotrowska H. Stanisz B. Murias M. COX-2 inhibitors: A novel strategy in the management of breast cancer. Drug Discov. Today 2016 21 4 598 615 10.1016/j.drudis.2015.12.003 26723915
    [Google Scholar]
  63. Altorki N.K. Keresztes R.S. Port J.L. Libby D.M. Korst R.J. Flieder D.B. Ferrara C.A. Yankelevitz D.F. Subbaramaiah K. Pasmantier M.W. Dannenberg A.J. Celecoxib, A selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J. Clin. Oncol. 2003 21 14 2645 2650 10.1200/JCO.2003.07.127 12860939
    [Google Scholar]
  64. Maru D. Hothi A. Bagariya C. Kumar A. Targeting ferroptosis pathways: A novel strategy for cancer therapy. Curr. Cancer Drug Targ. 2022 22 3 234 244 10.2174/1568009622666220211122745 35152865
    [Google Scholar]
  65. Tan S. Kong Y. Xian Y. Gao P. Xu Y. Wei C. Lin P. Ye W. Li Z. Zhu X. The mechanisms of ferroptosis and the applications in tumor treatment: Enemies or friends? Front. Mol. Biosci. 2022 9 938677 10.3389/fmolb.2022.938677 35911967
    [Google Scholar]
  66. Gargalovic P.S. Imura M. Zhang B. Gharavi N.M. Clark M.J. Pagnon J. Yang W.P. He A. Truong A. Patel S. Nelson S.F. Horvath S. Berliner J.A. Kirchgessner T.G. Lusis A.J. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl. Acad. Sci. 2006 103 34 12741 12746 10.1073/pnas.0605457103 16912112
    [Google Scholar]
  67. Mungrue I.N. Pagnon J. Kohannim O. Gargalovic P.S. Lusis A.J. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J. Immunol. 2009 182 1 466 476 10.4049/jimmunol.182.1.466 19109178
    [Google Scholar]
  68. Dixon S.J. Patel D.N. Welsch M. Skouta R. Lee E.D. Hayano M. Thomas A.G. Gleason C.E. Tatonetti N.P. Slusher B.S. Stockwell B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014 3 e02523 10.7554/eLife.02523 24844246
    [Google Scholar]
  69. Ning X. Qi H. Yuan Y. Li R. Wang Y. Lin Z. Yin Y. Identification of a new small molecule that initiates ferroptosis in cancer cells by inhibiting the system Xc− to deplete GSH. Eur. J. Pharmacol. 2022 934 175304 10.1016/j.ejphar.2022.175304 36174666
    [Google Scholar]
  70. de Baat A. Meier D.T. Rachid L. Fontana A. Schnetzler B.M. Donath M.Y. Cystine/glutamate antiporter System xc- deficiency impairs insulin secretion in mice. Diabetologia 2023 66 11 2062 2074 10.1007/s00125‑023‑05993‑6 37650924
    [Google Scholar]
  71. Yang X. Zhang M. Xia W. Mai Z. Ye Y. Zhao B. Song Y. CHAC1 promotes cell ferroptosis and enhances radiation sensitivity in thyroid carcinoma. Neoplasma 2024 70 6 777 786 10.4149/neo_2023_230103N4 38247333
    [Google Scholar]
  72. Zhou Z. Zhang H. CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress. Allergol. Immunopathol. 2023 51 2 99 110 10.15586/aei.v51i2.760 36916093
    [Google Scholar]
  73. Liu Y. Wu D. Fu Q. Hao S. Gu Y. Zhao W. Chen S. Sheng F. Xu Y. Chen Z. Yao K. CHAC1 as a novel contributor of ferroptosis in retinal pigment epithelial cells with oxidative damage. Int. J. Mol. Sci. 2023 24 2 1582 10.3390/ijms24021582 36675091
    [Google Scholar]
  74. Lu J. Guo Q. Zhao H. Liu H. Hederagenin promotes lung cancer cell death by activating CHAC1-dependent ferroptosis pathway. Biochem. Biophys. Res. Commun. 2024 718 150085 10.1016/j.bbrc.2024.150085 38735142
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096337720241030055036
Loading
/content/journals/ccdt/10.2174/0115680096337720241030055036
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: CHAC1 ; ferroptosis ; ROS ; rofecoxib ; celecoxib ; COX-2 inhibitor ; Nasopharyngeal carcinoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test