Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Liver cancer is a leading cause of cancer-related mortality, with about one million people losing their lives each year. The disease becomes even more dangerous when tumors cannot be removed through surgery. Globally, hepatocellular carcinoma (HCC) ranks third in terms of fatality rates among liver cancers. It is also the most frequent type of liver cancer. Due to the high mortality rate associated with this malignancy, it is a hotspot for researchers looking to improve treatment methods. Nanotechnology plays an important part in these attempts. Various types of nanoparticles (NPs) have been investigated for their ability to fight liver cancer. NPs are a vast class of materials. The article details the efforts made to include inorganic NPs, such as silver, gold, metal oxide, platinum, calcium, selenium, and other uncommon materials into drug delivery systems (DDS) for therapeutic, carrier, or imaging purposes. This review discusses the function of carbon-based NPs in DDS for the treatment of liver cancer, including polymeric, polysaccharide, lipid, and carbon dot NPs, all of which have been extensively researched for this purpose. The purpose of this review is to provide a concise overview of recent developments in the field of HCC based on current research and clinical diagnosis and treatment guidelines. Further goals include elucidating the current state of nanomaterials research, its limitations, and the potential for future advancements in the field, as well as the use of nanotechnology in the detection and treatment of HCC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096336494240915164019
2024-10-30
2026-02-20
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. FogliaB. TuratoC. CannitoS. Hepatocellular Carcinoma: Latest Research in Pathogenesis, Detection and Treatment.Int. J. Mol. Sci.202324151222410.3390/ijms241512224 37569600
    [Google Scholar]
  3. HuangJ. NgaiC.H. DengY. TinM.S. LokV. ZhangL. YuanJ. XuW. ZhengZ.J. WongM.C.S. Cancer Incidence and Mortality in Asian Countries: A Trend Analysis.Cancer Contr.20222910.1177/10732748221095955 35770775
    [Google Scholar]
  4. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  5. ShanT. RanX. LiH. FengG. ZhangS. ZhangX. ZhangL. LuL. AnL. FuR. SunK. WangS. ChenR. LiL. ChenW. WeiW. ZengH. HeJ. Disparities in stage at diagnosis for liver cancer in China.Journal of the National Cancer Center20233171310.1016/j.jncc.2022.12.002 39036312
    [Google Scholar]
  6. GosaliaA.J. MartinP. JonesP.D. Advances and Future Directions in the Treatment of Hepatocellular Carcinoma.Gastroenterol. Hepatol. (N. Y.)2017137398410 28867968
    [Google Scholar]
  7. LafaceC. LaforgiaM. MolinariP. UgentiI. GadaletaC.D. PortaC. RanieriG. Hepatic Arterial Infusion of Chemotherapy for Advanced Hepatobiliary Cancers: State of the Art.Cancers (Basel)20211312309110.3390/cancers13123091 34205656
    [Google Scholar]
  8. RizzoA. RicciA.D. BrandiG. Trans-Arterial Chemoembolization Plus Systemic Treatments for Hepatocellular Carcinoma: An Update.J. Pers. Med.20221211178810.3390/jpm12111788 36579504
    [Google Scholar]
  9. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.Cancers (Basel)20241610183510.3390/cancers16101835 38791914
    [Google Scholar]
  10. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  11. MuralidharA. PotluriH.K. JaiswalT. McNeelD.G. Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer.Pharmaceutics202315125210.3390/pharmaceutics15010252 36678880
    [Google Scholar]
  12. DashK. DekaP. BangarS. ChaudharyV. TrifM. RusuA. Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review.Polymers (Basel)202214352110.3390/polym14030521 35160510
    [Google Scholar]
  13. AltammarK.A. A review on nanoparticles: characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  14. AnjumS. IshaqueS. FatimaH. FarooqW. HanoC. AbbasiB.H. AnjumI. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives.Pharmaceuticals (Basel)202114870710.3390/ph14080707 34451803
    [Google Scholar]
  15. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  16. JainK.K. Drug delivery systems-an overview.Drug Deliv. Systems.Springer2008;15010.1007/978‑1‑59745‑210‑6_1
    [Google Scholar]
  17. PissuwanD. NiidomeT. CortieM.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems.J Control Release.201114916571
    [Google Scholar]
  18. Brannon-PeppasL. BlanchetteJ.O. Nanoparticle and targeted systems for cancer therapy.Adv. Drug Deliv. Rev.20126420621210.1016/j.addr.2012.09.033 15350294
    [Google Scholar]
  19. VelikyanI. Radionuclides for imaging and therapy in oncology.Cancer Theranostics.Elsevier201428532510.1016/B978‑0‑12‑407722‑5.00017‑7
    [Google Scholar]
  20. KoiralaN. DasD. FayazzadehE. SenS. McClainA. PuskasJ.E. DrazbaJ.A. McLennanG. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma.J. Biomed. Mater. Res. A2019107112522253510.1002/jbm.a.36758 31334591
    [Google Scholar]
  21. RamzyL. NasrM. MetwallyA.A. AwadG.A.S. Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors.Eur. J. Pharm. Sci.201710427329210.1016/j.ejps.2017.04.005 28412485
    [Google Scholar]
  22. ShenY. LiX. DongD. ZhangB. XueY. ShangP. Transferrin receptor 1 in cancer: a new sight for cancer therapy.Am. J. Cancer Res.201886916931 30034931
    [Google Scholar]
  23. ZhangJ. ZhangM. JiJ. FangX. PanX. WangY. WuC. ChenM. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma.Pharm. Res.201532103376339010.1007/s11095‑015‑1714‑2 26148773
    [Google Scholar]
  24. HanL. HuangR. LiuS. HuangS. JiangC. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors.Mol. Pharm.2010762156216510.1021/mp100185f 20857964
    [Google Scholar]
  25. BansalD. YadavK. PandeyV. GaneshpurkarA. AgnihotriA. DubeyN. Lactobionic acid coupled liposomes: an innovative strategy for targeting hepatocellular carcinoma.Drug Deliv.201623114014610.3109/10717544.2014.907373 24786484
    [Google Scholar]
  26. XiongQ. CuiM. BaiY. LiuY. LiuD. SongT. A supramolecular nanoparticle system based on β-cyclodextrin-conjugated poly-l-lysine and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma.Colloids Surf. B Biointerfaces20171559310310.1016/j.colsurfb.2017.04.008 28411478
    [Google Scholar]
  27. LuC. RongD. ZhangB. ZhengW. WangX. ChenZ. TangW. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities.Mol. Cancer201918113010.1186/s12943‑019‑1047‑6 31464625
    [Google Scholar]
  28. KurebayashiY. OjimaH. TsujikawaH. KubotaN. MaeharaJ. AbeY. KitagoM. ShinodaM. KitagawaY. SakamotoM. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification.Hepatology20186831025104110.1002/hep.29904 29603348
    [Google Scholar]
  29. PrietoJ. MeleroI. SangroB. Immunological landscape and immunotherapy of hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.2015121268170010.1038/nrgastro.2015.173 26484443
    [Google Scholar]
  30. ZhouS.L. ZhouZ.J. HuZ.Q. HuangX.W. WangZ. ChenE.B. FanJ. CaoY. DaiZ. ZhouJ. Tumorassociated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to Sorafenib.Gastroenterology2016150716461658.e1710.1053/j.gastro.2016.02.040 26924089
    [Google Scholar]
  31. QuailD.F. JoyceJ.A. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.201319111423143710.1038/nm.3394 24202395
    [Google Scholar]
  32. HuangY YuanJ RighiE DudaDG. FukumuraD; Poznansky, MC Vascular normalization: a strategy to recondition the tumor immune microenvironment.J Immunother Cancer.20131Suppl. 115510.1186/2051‑1426‑1‑S1‑P155
    [Google Scholar]
  33. RupaimooleR. CalinG.A. Lopez-BeresteinG. SoodA.K. miRNA deregulation in cancer cells and the tumor microenvironment.Cancer Discov.20166323524610.1158/2159‑8290.CD‑15‑0893 26865249
    [Google Scholar]
  34. AntsiferovaM. HuberM. MeyerM. Piwko-CzuchraA. RamadanT. MacLeodA.S. HavranW.L. DummerR. HohlD. WernerS. Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response.Nat. Commun.20112157610.1038/ncomms1585 22146395
    [Google Scholar]
  35. McAllisterS.S. WeinbergR.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis.Nat. Cell Biol.201416871772710.1038/ncb3015 25082194
    [Google Scholar]
  36. FrancoO.E. ShawA.K. StrandD.W. HaywardS.W. Cancer associated fibroblasts in cancer pathogenesis.Semin. Cell Dev. Biol.2010211333910.1016/j.semcdb.2009.10.010 19896548
    [Google Scholar]
  37. AnY. LiuF. ChenY. YangQ. Crosstalk between cancer associated fibroblasts and immune cells in cancer.J. Cell. Mol. Med.2020241132410.1111/jcmm.14745 31642585
    [Google Scholar]
  38. YinZ. DongC. JiangK. XuZ. LiR. GuoK. ShaoS. WangL. Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma.J. Hematol. Oncol.201912110110.1186/s13045‑019‑0782‑x 31547836
    [Google Scholar]
  39. LoefflerM. KrügerJ.A. NiethammerA.G. ReisfeldR.A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake.J. Clin. Invest.200611671955196210.1172/JCI26532 16794736
    [Google Scholar]
  40. SinghS. RossS.R. AcenaM. RowleyD.A. SchreiberH. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells.J. Exp. Med.1992175113914610.1084/jem.175.1.139 1309851
    [Google Scholar]
  41. PisanoA. SantollaM.F. De FrancescoE.M. De MarcoP. RigiraccioloD.C. PerriM.G. VivacquaA. AbonanteS. CappelloA.R. DolceV. BelfioreA. MaggioliniM. LappanoR. GPER, IGF‐IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer associated fibroblasts.Mol. Carcinog.201756258059310.1002/mc.22518 27341075
    [Google Scholar]
  42. HegabA.E. OzakiM. KameyamaN. GaoJ. KagawaS. YasudaH. SoejimaK. YinY. GuzyR.D. NakamuraY. OrnitzD.M. BetsuyakuT. Effect of FGF/FGFR pathway blocking on lung adenocarcinoma and its cancer‐associated fibroblasts.J. Pathol.2019249219320510.1002/path.5290 31090071
    [Google Scholar]
  43. OwusuB. GalemmoR. JanetkaJ. KlampferL. Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment.Cancers (Basel)2017943510.3390/cancers9040035 28420162
    [Google Scholar]
  44. KatoT. NomaK. OharaT. KashimaH. KatsuraY. SatoH. KomotoS. KatsubeR. NinomiyaT. TazawaH. ShirakawaY. FujiwaraT. Cancerassociated fbroblasts afect intratumoral CD8(+) and FoxP3(+) T cells via IL6 in the tumor microenvironment.Clin. Cancer Res.201824194820483310.1158/1078‑0432.CCR‑18‑0205 29921731
    [Google Scholar]
  45. Hashemi GoradelN. NajafiM. SalehiE. FarhoodB. MortezaeeK. Cyclooxygenase‐2 in cancer: A review.J. Cell. Physiol.201923455683569910.1002/jcp.27411 30341914
    [Google Scholar]
  46. KomoharaY. TakeyaM. CAFs and TAMs: maestros of the tumour microenvironment.J. Pathol.2017241331331510.1002/path.4824 27753093
    [Google Scholar]
  47. BordignonP. BottoniG. XuX. PopescuA.S. TruanZ. GuenovaE. KoflerL. JafariP. OstanoP. RöckenM. NeelV. DottoG.P. Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fbroblast activation with ETV1 as a critical determinant.Cell Rep.201928923582372.e610.1016/j.celrep.2019.07.092 31461652
    [Google Scholar]
  48. KapsL. SchuppanD. Targeting cancer associated fbroblasts in liver fbrosis and liver cancer using nanocarriers.Cells202099202710.3390/cells9092027 32899119
    [Google Scholar]
  49. CollM. PereaL. BoonR. LeiteS.B. VallverdúJ. MannaertsI. SmoutA. El TaghdouiniA. BlayaD. Rodrigo-TorresD. GrauperaI. Aguilar-BravoB. ChesneC. NajimiM. SokalE. LozanoJ.J. van GrunsvenL.A. VerfaillieC.M. Sancho-BruP. Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fbrosis.Cell Stem Cell2018231101113.e710.1016/j.stem.2018.05.027 30049452
    [Google Scholar]
  50. BarryA.E. BaldeosinghR. LammR. PatelK. ZhangK. DominguezD.A. KirtonK.J. ShahA.P. DangH. Hepatic stellate cells and hepatocarcinogenesis.Front. Cell Dev. Biol.2020870910.3389/fcell.2020.00709 32850829
    [Google Scholar]
  51. CirriP. ChiarugiP. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression.Cancer Metastasis Rev.2012311-219520810.1007/s10555‑011‑9340‑x 22101652
    [Google Scholar]
  52. AmannT. BatailleF. SprussT. MühlbauerM. GäbeleE. SchölmerichJ. KieferP. BosserhoffA.K. HellerbrandC. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma.Cancer Sci.2009100464665310.1111/j.1349‑7006.2009.01087.x 19175606
    [Google Scholar]
  53. ZhaoW. ZhangL. XuY. ZhangZ. RenG. TangK. KuangP. ZhaoB. YinZ. WangX. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model.Lab. Invest.201494218219110.1038/labinvest.2013.139 24296878
    [Google Scholar]
  54. YanL. SinghL.S. ZhangL. XuY. Role of OGR1 in myeloid-derived cells in prostate cancer.Oncogene201433215716410.1038/onc.2012.566 23222714
    [Google Scholar]
  55. KumarV. PatelS. TcyganovE. GabrilovichD.I. The nature of myeloidderived suppressor cells in the tumor microenvironment.Trends Immunol.201637320822010.1016/j.it.2016.01.004 26858199
    [Google Scholar]
  56. ZhangF. HaoM. JinH. YaoZ. LianN. WuL. ShaoJ. ChenA. ZhengS. Canonical hedgehog signalling regulates hepatic stellate cell‐mediated angiogenesis in liver fibrosis.Br. J. Pharmacol.2017174540942310.1111/bph.13701 28052321
    [Google Scholar]
  57. HöchstB. SchildbergF.A. SauerbornP. GäbelY.A. GevenslebenH. GoltzD. HeukampL.C. TürlerA. BallmaierM. GiesekeF. MüllerI. KalffJ. KurtsC. KnolleP.A. DiehlL. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion.J. Hepatol.201359352853510.1016/j.jhep.2013.04.033 23665041
    [Google Scholar]
  58. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.217 28117416
    [Google Scholar]
  59. OrecchioniM. GhoshehY. PramodA.B. LeyK. Macrophage polarization: diferent gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages.Front. Immunol.201910108410.3389/fimmu.2019.01084 31178859
    [Google Scholar]
  60. Garrido-MartinE.M. MellowsT.W.P. ClarkeJ. GanesanA.P. WoodO. CazalyA. SeumoisG. CheeS.J. AlzetaniA. KingE.V. HedrickC.C. ThomasG. FriedmannP.S. OttensmeierC.H. VijayanandP. Sanchez-ElsnerT. M1 hot tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer.J. Immunother. Cancer202082e00077810.1136/jitc‑2020‑000778 32699181
    [Google Scholar]
  61. WangQ. StegerA. MahnerS. JeschkeU. HeideggerH. The formation and therapeutic update of tumor-associated macrophages in cervical cancer.Int. J. Mol. Sci.20192013331010.3390/ijms20133310 31284453
    [Google Scholar]
  62. NyiramanaM.M. ChoS.B. KimE.J. KimM.J. RyuJ.H. NamH.J. KimN.G. ParkS.H. ChoiY.J. KangS.S. JungM. ShinM.K. HanJ. JangI.S. KangD. Sea hare hydrolysate-induced reduction of human non-small cell lung cancer cell growth through regulation of macrophage polarization and nonapoptotic regulated cell death pathways.Cancers (Basel)202012372610.3390/cancers12030726 32204484
    [Google Scholar]
  63. HovesS. OoiC.H. WolterC. SadeH. BissingerS. SchmittnaegelM. AstO. GiustiA.M. WarthaK. RunzaV. XuW. KienastY. CannarileM.A. LevitskyH. RomagnoliS. De PalmaM. RüttingerD. RiesC.H. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity.J. Exp. Med.2018215385987610.1084/jem.20171440 29436396
    [Google Scholar]
  64. HuangY. SnuderlM. JainR.K. Polarization of tumor-associated macrophages: a novel strategy for vascular normalization and antitumor immunity.Cancer Cell20111911210.1016/j.ccr.2011.01.005 21251607
    [Google Scholar]
  65. XiaY. RaoL. YaoH. WangZ. NingP. ChenX. Engineering macrophages for cancer immunotherapy and drug delivery.Adv. Mater.20203240200205410.1002/adma.202002054 32856350
    [Google Scholar]
  66. YangJ.D. NakamuraI. RobertsL.R. The tumor microenvironment in hepatocellular carcinoma: Current status and therapeutic targets.Semin. Cancer Biol.2011211354310.1016/j.semcancer.2010.10.007 20946957
    [Google Scholar]
  67. TorimuraT. UenoT. InuzukaS. KinM. OhiraH. KimuraY. MajimaY. SataM. AbeH. TanikawaK. The extracellular matrix in hepatocellular carcinoma shows different localization patterns depending on the differentiation and the histological pattern of tumors: immunohistochemical analysis.J. Hepatol.1994211374610.1016/S0168‑8278(94)80134‑7 7963419
    [Google Scholar]
  68. SeehawerM. HeinzmannF. D’ArtistaL. HarbigJ. RouxP.F. HoenickeL. DangH. KlotzS. RobinsonL. DoréG. RozenblumN. KangT.W. ChawlaR. BuchT. VucurM. RothM. ZuberJ. LueddeT. SiposB. LongerichT. HeikenwälderM. WangX.W. BischofO. ZenderL. Necroptosis microenvironment directs lineage commitment in liver cancer.Nature20185627725697510.1038/s41586‑018‑0519‑y 30209397
    [Google Scholar]
  69. WangH. ZhangC. ChiH. MengZ. Synergistic anti-hepatoma effect of bufalin combined with sorafenib via mediating the tumor vascular microenvironment by targeting mTOR/VEGF signaling.Int. J. Oncol.20185262051206010.3892/ijo.2018.4351 29620259
    [Google Scholar]
  70. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  71. KudoM. Scientifc rationale for combined Immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma.Cancers (Basel)2020125108910.3390/cancers12051089 32349374
    [Google Scholar]
  72. WilsonW.R. HayM.P. Targeting hypoxia in cancer therapy.Nat. Rev. Cancer201111639341010.1038/nrc3064 21606941
    [Google Scholar]
  73. LlovetJ. BruixJ. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival.Hepatology200337242944210.1053/jhep.2003.50047 12540794
    [Google Scholar]
  74. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. JainP. Hepatoprotective activity of isolated herbal compounds. Research.J. Pharm. Technol.201472
    [Google Scholar]
  75. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and Characterization of Silver Nanoparticles of Different Species of Curcuma in the Treatment of Cancer Using Human Colon Cancer Cell Line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  76. KasianchukN. DobrowolskaK. HarkavaS. BretcanA. Zarębska-MichalukD. JaroszewiczJ. FlisiakR. RzymskiP. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review.Viruses20231512239510.3390/v15122395 38140636
    [Google Scholar]
  77. LiC. ZhangW. YangH. XiangJ. WangX. WangJ. Integrative analysis of dysregulated lncRNA-associated ceRNA network reveals potential lncRNA biomarkers for human hepatocellular carcinoma.PeerJ20208e875810.7717/peerj.8758 32201648
    [Google Scholar]
  78. SingalA.G. LimJ.K. KanwalF. AGA CLINICAL PRACTICE UPDATE : EXPERT REVIEW AGA Clinical Practice Update on Interaction Between Oral Direct- Hepatocellular Carcinoma : Expert Review.Gastroenterology201915682149215710.1053/j.gastro.2019.02.046 30878469
    [Google Scholar]
  79. ZhangY. CuiH. ZhangR. ZhangH. HuangW. Nanoparticulation of Prodrug into Medicines for Cancer Therapy.Adv. Sci. (Weinh.)2021818210145410.1002/advs.202101454 34323373
    [Google Scholar]
  80. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian Journal of Biochemistry and Biophysics2021582156161
    [Google Scholar]
  81. JinG.Z. DongH. YuW.L. LiY. LuX.Y. YuH. XianZ.H. DongW. LiuY.K. CongW.M. WuM.C. A novel panel of biomarkers in distinction of small well-differentiated HCC from dysplastic nodules and outcome values.BMC Cancer201313116110.1186/1471‑2407‑13‑161 23537217
    [Google Scholar]
  82. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin, Natural Polymers as a Carrier for the Effective Delivery of Antineoplastic Drugs.Curr. Drug Deliv.202421219321010.2174/1567201820666230112170035 36644864
    [Google Scholar]
  83. HagagN.A.A. YBM, A. A. Elsharawy, R. M.Talaat. J. Gastrointest. Cancer20205123410.1007/s12029‑019‑00234‑9 31028536
    [Google Scholar]
  84. MehtaN. DodgeJ.L. GrabJ.D. YaoF.Y. National Experience on Down‐Staging of Hepatocellular Carcinoma Before Liver Transplant: Influence of Tumor Burden, Alpha‐Fetoprotein, and Wait Time.Hepatology202071394395410.1002/hep.30879 31344273
    [Google Scholar]
  85. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.2023835968[Internet].10.1016/j.matpr.2023.01.147
    [Google Scholar]
  86. DadfarS.M.M. Sekula-NeunerS. TrouilletV. LiuH.Y. KumarR. PowellA.K. HirtzM. Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP).Beilstein J. Nanotechnol.2019102505251510.3762/bjnano.10.241 31921529
    [Google Scholar]
  87. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and Antioxidant Activities of a Combination of Terminalia Arjuna and Commiphora Mukul on Experimental Animals BT.Advances in Biomedical Engineering and Technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021;175188
    [Google Scholar]
  88. PotéN. CauchyF. AlbuquerqueM. VoitotH. BelghitiJ. CasteraL. PuyH. BedossaP. ParadisV. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion.J. Hepatol.201562484885410.1016/j.jhep.2014.11.005 25450201
    [Google Scholar]
  89. StillströmD. BeermannM. EngstrandJ. FreedmanJ. NilssonH. Initial experience with irreversible electroporation of liver tumours.Eur. J. Radiol. Open20196626710.1016/j.ejro.2019.01.004 30723754
    [Google Scholar]
  90. ZhaoZ. WangX. ZhangZ. ZhangH. LiuH. ZhuX. LiH. ChiX. YinZ. GaoJ. Real-time monitoring of arsenic trioxide release and delivery by activatable T(1) imaging.ACS Nano2015932749275910.1021/nn506640h 25688714
    [Google Scholar]
  91. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of Thermoresponsive Smart Polymers based in situ Gel as a Novel Carrier for Tumor Targeting [Internet].Curr. Cancer Drug Targets202424122
    [Google Scholar]
  92. KhatikR. WangZ. LiF. ZhiD. KiranS. DwivediP. XuR.X. LiangG. QiuB. YangQ. “Magnus nano-bullets” as T1/T2 based dual-modal for in vitro and in vivo MRI visualization.Nanomedicine201915126427310.1016/j.nano.2018.10.005
    [Google Scholar]
  93. RandD. OrtizV. LiuY. DerdakZ. WandsJ.R. TatíčekM. Rose-PetruckC. Nanomaterials for X-ray imaging: gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma.Nano Lett.20111172678268310.1021/nl200858y 21644516
    [Google Scholar]
  94. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.).Int. J. Acarol.2020464263267[Taylor n Francis]10.1080/01647954.2020.1767203
    [Google Scholar]
  95. SongC. MengX. LiuY. ShenA. ShaoC. WangK. ChengH. FangX. WangP. BuW. Susceptibility-weighted imaging for metabolic pathway mapping of low-dosage nanoparticles in organisms.Biomaterials202023011963110.1016/j.biomaterials.2019.119631 31761488
    [Google Scholar]
  96. WeiM. ChenS. LiJ. LiB. ShenJ. PengZ. ZhouQ. ZouY. HeX. LiS. LiD. PengB. LaiJ. PengS. QinB. KuangM. Prognostic Role of Time to Surgery in Hepatocellular Carcinoma at Barcelona Clinic Liver Cancer Stage 0-A.Ann. Surg. Oncol.202027103740375310.1245/s10434‑020‑08499‑2 32424586
    [Google Scholar]
  97. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for Toxicity and Improved Therapeutic Effectiveness of Natural Polymer Co-administered Along with Venocin in Acetic Acid-Induced Colitis Using Rat Model BT.Advances in Biomedical Engineering and Technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021;207220
    [Google Scholar]
  98. TsudaT. KaiboriM. HishikawaH. NakatakeR. OkumuraT. OzekiE. HaraI. MorimotoY. YoshiiK. KonM. PLoS One2017120183527
    [Google Scholar]
  99. DaiY.W. ZhuL.X. ZhangY. WangS.H. ChenK. JiangT.T. XuX.L. GengX.P. Au@SiO2@CuInS2-ZnS/Anti-AFP fluorescent probe improves HCC cell labeling.Hepatobiliary Pancreat. Dis. Int.201918326627210.1016/j.hbpd.2019.03.001 30879890
    [Google Scholar]
  100. QuY. WangZ. ZhaoF. LiuJ. ZhangW. LiJ. SongZ. XuH. AFM-detected apoptosis of hepatocellular carcinoma cells induced by American ginseng root water extract.Micron20181041710.1016/j.micron.2017.10.003 29049926
    [Google Scholar]
  101. SahuB. Comprehensive Review on Non-Alcoholic Fatty Liver Disease (NAFLD).Clinical Advancement and Drug Treatments. Prob. Sci.20241117
    [Google Scholar]
  102. ShiH. GuR. XuW. HuangH. XueL. WangW. ZhangY. SiW. DongX. Near-Infrared Light-Harvesting Fullerene-Based Nanoparticles for Promoted Synergetic Tumor Phototheranostics.ACS Appl. Mater. Interfaces20191148449704497710.1021/acsami.9b17716 31702130
    [Google Scholar]
  103. SangM. HanL. LuoR. QuW. ZhengF. ZhangK. LiuF. XueJ. LiuW. FengF. CD44 targeted redox-triggered self assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer.Biomater. Sci.20208121222310.1039/C9BM01171D 31674634
    [Google Scholar]
  104. KimN. ChengJ. JungI. LiangJ. ShihY.L. HuangW.Y. KimuraT.L. VHF, Z. C. Zeng, R. Zhenggan, C. S. Kay, S. J. Heo, J. Y. Won.J. Seong. J. Hepatol.20207312110.1016/j.jhep.2020.03.005 32165253
    [Google Scholar]
  105. WangJ. MengJ. RanW. LeeR.J. TengL. ZhangP. LiY. Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein.Nano Lett.20191985266527610.1021/acs.nanolett.9b01717 31361965
    [Google Scholar]
  106. JainP. PandeyR. ShuklaS.S. Natural Sources of Anti inflammation.Inflammation: Natural Resources and Its Applications. JainP. PandeyR. ShuklaS.S. New Delhi, IndiaSpringer2015;2513310.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  107. XueY. NiuW. WangM. ChenM. GuoY. LeiB. Engineering a Biodegradable Multifunctional Antibacterial Bioactive Nanosystem for Enhancing Tumor Photothermo-Chemotherapy and Bone Regeneration.ACS Nano202014144245310.1021/acsnano.9b06145 31702885
    [Google Scholar]
  108. YangZ. WangJ. LiuS. LiX. MiaoL. YangB. ZhangC. HeJ. AiS. GuanW. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway.Biomaterials202022911958010.1016/j.biomaterials.2019.119580 31707296
    [Google Scholar]
  109. ChoiB. JungH. YuB. ChoiH. LeeJ. KimD.H. SequentialMR Image‐Guided Local Immune Checkpoint Blockade Cancer Immunotherapy Using Ferumoxytol Capped Ultralarge Pore Mesoporous Silica Carriers after Standard Chemotherapy.Small20191552190437810.1002/smll.201904378
    [Google Scholar]
  110. XuJ. ChengX. TanL. FuC. AhmedM. TianJ. DouJ. ZhouQ. RenX. WuQ. TangS. ZhouH. MengX. YuJ. LiangP. Microwave responsive nanoplatform via P-selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis.Nano Lett.20191952914292710.1021/acs.nanolett.8b05202 30929452
    [Google Scholar]
  111. HanG. BerhaneS. ToyodaH. BettingerD. ElshaarawyO. ChanA.W.H. KirsteinM. MosconiC. HuckeF. PalmerD. PinatoD.J. SharmaR. OttavianiD. JangJ.W. LabeurT.A. van DeldenO.M. PirisiM. SternN. SangroB. MeyerT. FateenW. García-FiñanaM. GomaaA. WakedI. RewishaE. AithalG.P. TravisS. KudoM. CucchettiA. Peck-RadosavljevicM. TakkenbergR.B. ChanS.L. VogelA. JohnsonP.J. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: a response based approach.Hepatology2019 31698504
    [Google Scholar]
  112. Ebeling BarbierC. HeindryckxF. LennernäsH. Limitations and Possibilities of Transarterial Chemotherapeutic Treatment of Hepatocellular Carcinoma.Int. J. Mol. Sci.202122231305110.3390/ijms222313051 34884853
    [Google Scholar]
  113. SangiovanniA. PratiG.M. FasaniP. RonchiG. RomeoR. ManiniM. Del NinnoE. MorabitoA. ColomboM. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients.Hepatology20064361303131010.1002/hep.21176 16729298
    [Google Scholar]
  114. FornerA. LlovetJ.M. BruixJ. Hepatocellular carcinoma.Lancet201237998221245125510.1016/S0140‑6736(11)61347‑0 22353262
    [Google Scholar]
  115. XinQ. MaH. WangH. ZhangX.D. Tracking tumor heterogeneity and progression with near‐infrared II fluorophores.Exploration2023322022001110.1002/EXP.20220011 37324032
    [Google Scholar]
  116. ZengJ. LiL. ZhangH. LiJ. LiuL. ZhouG. DuQ. ZhengC. YangX. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization.Theranostics20188174591460010.7150/thno.27379 30279724
    [Google Scholar]
  117. XuM.X. GeC.X. QinY.T. GuT.T. LouD.S. LiQ. HuL.F. TanJ. Multicombination Approach Suppresses Listeria monocytogenes ‐Induced Septicemia‐Associated Acute Hepatic Failure: The Role of iRhom2 Signaling.Adv. Healthc. Mater.2018717180042710.1002/adhm.201800427 29944201
    [Google Scholar]
  118. BroutierL. MastrogiovanniG. VerstegenM.M.A. FranciesH.E. GavarróL.M. BradshawC.R. AllenG.E. Arnes-BenitoR. SidorovaO. GasperszM.P. GeorgakopoulosN. KooB.K. DietmannS. DaviesS.E. PraseedomR.K. LieshoutR. IJzermansJ.N.M. WigmoreS.J. Saeb-ParsyK. GarnettM.J. van der LaanL.J.W. HuchM. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening.Nat. Med.201723121424143510.1038/nm.4438 29131160
    [Google Scholar]
  119. Adebayo MichaelA.O. KoS. TaoJ. MogheA. YangH. XuM. RussellJ.O. Pradhan-SunddT. LiuS. SinghS. PoddarM. MongaJ.S. LiuP. OertelM. RanganathanS. SinghiA. RebouissouS. Zucman-RossiJ. RibbackS. CalvisiD. QvartskhavaN. GörgB. HäussingerD. ChenX. MongaS.P. Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations.Cell Metab.201929511351150.e610.1016/j.cmet.2019.01.002 30713111
    [Google Scholar]
  120. WangT. ZhangJ. HouT. YinX. ZhangN. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy.Nanoscale20191129139341394610.1039/C9NR03374B 31305839
    [Google Scholar]
  121. KhanM. ZhaoP. KhanA. RazaF. RazaS.M. SarfrazM. ChenY. LiM. YangT. MaX. XiangG. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity.Int. J. Nanomedicine2019143753377110.2147/IJN.S196651 31239661
    [Google Scholar]
  122. LaiI. SwaminathanS. BaylotV. MosleyA. DhanasekaranR. GabayM. FelsherD.W. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma.J. Immunother. Cancer20186112510.1186/s40425‑018‑0431‑x 30458889
    [Google Scholar]
  123. ZhangY.Q. ShenY. LiaoM.M. MaoX. MiG.J. YouC. GuoQ.Y. LiW.J. WangX.Y. LinN. WebsterT.J. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms.Nanomedicine2019151869710.1016/j.nano.2018.09.002 30244085
    [Google Scholar]
  124. CallegariE. GuerrieroP. BassiC. D’AbundoL. FrassoldatiA. SimoniE. AstolfiL. SiliniE.M. SabbioniS. NegriniM. miR-199a-3p increases the anti-tumor activity of palbociclib in liver cancer models.Mol. Ther. Nucleic Acids20222953854910.1016/j.omtn.2022.07.015 36035756
    [Google Scholar]
  125. LuJ. WangJ. LingD. Surface Engineering of Nanoparticles for Targeted Delivery to Hepatocellular Carcinoma.Small2018145170203710.1002/smll.201702037 29251419
    [Google Scholar]
  126. LuJ. SunJ. LiF. WangJ. LiuJ. KimD. FanC. HyeonT. LingD. Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies.J. Am. Chem. Soc.201814032100711007410.1021/jacs.8b04169 30059219
    [Google Scholar]
  127. DuclosR.I.Jr BlueK.D. RufoM.J. ChenX. GuoJ.J. MaX. LencerW.I. ChinnapenD.J.F. Conjugation of peptides to short-acyl-chain ceramides for delivery across mucosal cell barriers.Bioorg. Med. Chem. Lett.202030812701410.1016/j.bmcl.2020.127014 32081448
    [Google Scholar]
  128. HatoT. GoyalL. GretenT.F. DudaD.G. ZhuA.X. Immune checkpoint blockade in hepatocellular carcinoma: Current progress and future directions.Hepatology20146051776178210.1002/hep.27246 24912948
    [Google Scholar]
  129. YauT. HsuC. KimT.Y. ChooS.P. KangY.K. HouM.M. NumataK. YeoW. ChopraA. IkedaM. KuromatsuR. MoriguchiM. ChaoY. ZhaoH. AndersonJ. CruzC.D. KudoM. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis.J. Hepatol.201971354355210.1016/j.jhep.2019.05.014 31176752
    [Google Scholar]
  130. SethP.P. TanowitzM. BennettC.F. Selective tissue targeting of synthetic nucleic acid drugs.J. Clin. Invest.2019129391592510.1172/JCI125228 30688661
    [Google Scholar]
  131. ArranjaA.G. PathakV. LammersT. ShiY. Tumor-targeted nanomedicines for cancer theranostics.Pharmacol. Res.2017115879510.1016/j.phrs.2016.11.014 27865762
    [Google Scholar]
  132. StevensN.E. HatjopolousA. FraserC.K. AlsharifiM. DienerK.R. HayballJ.D. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.Sci. Rep.2016612915410.1038/srep29154 27380890
    [Google Scholar]
  133. GoosJ.A.C.M. ChoA. CarterL.M. DillingT.R. DavydovaM. MandleywalaK. PuttickS. GuptaA. PriceW.S. QuinnJ.F. WhittakerM.R. LewisJ.S. DavisT.P. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.Theranostics202010256758410.7150/thno.36777 31903138
    [Google Scholar]
  134. SuY. WangK. LiY. SongW. XinY. ZhaoW. TianJ. RenL. LuL. Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy.Nanomedicine (Lond.)20181391009102310.2217/nnm‑2018‑0046 29630448
    [Google Scholar]
  135. ZhouJ. HanY. YangY. ZhangL. WangH. ShenY. LaiJ. ChenJ. Phospholipid-decorated glycogen nanoparticles for stimuli-responsive drug release and synergetic chemophotothermal therapy of hepatocellular carcinoma.ACS Appl. Mater. Interfaces20201220233112332210.1021/acsami.0c02785 32349481
    [Google Scholar]
  136. ElnaggarM.H. AbushoukA.I. HassanA.H.E. LamloumH.M. BenmeloukaA. MoatamedS.A. Abd-ElmegeedH. AttiaS. SamirA. AmrN. JoharD. ZakyS. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma.Semin. Cancer Biol.202169919910.1016/j.semcancer.2019.08.016 31421265
    [Google Scholar]
  137. YooJ. ParkC. YiG. LeeD. KooH. Active targeting strategies using biological ligands for nanoparticle drug delivery systems.Cancers (Basel)201911564010.3390/cancers11050640 31072061
    [Google Scholar]
  138. VerslypeC. RosmorducO. RougierP. Hepatocellular carcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201223Suppl. 7vii41vii4810.1093/annonc/mds225 22997453
    [Google Scholar]
  139. Netea-MaierR.T. SmitJ.W.A. NeteaM.G. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.Cancer Lett.201841310210910.1016/j.canlet.2017.10.037 29111350
    [Google Scholar]
  140. CampbellR.B. Tumor physiology and delivery of nanopharmaceuticals.Anticancer. Agents Med. Chem.20066650351210.2174/187152006778699077 17100555
    [Google Scholar]
  141. CormodeD.P. SkajaaG.O. DelshadA. ParkerN. JarzynaP.A. CalcagnoC. GalperM.W. SkajaaT. Briley-SaeboK.C. BellH.M. GordonR.E. FayadZ.A. WooS.L.C. MulderW.J.M. A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver.Bioconjug. Chem.201122335336110.1021/bc1003179 21361312
    [Google Scholar]
  142. DobrovolskaiaM.A. AggarwalP. HallJ.B. McNeilS.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol. Pharm.20085448749510.1021/mp800032f 18510338
    [Google Scholar]
  143. SchipperM.L. IyerG. KohA.L. ChengZ. EbensteinY. AharoniA. KerenS. BentolilaL.A. LiJ. RaoJ. ChenX. BaninU. WuA.M. SinclairR. WeissS. GambhirS.S. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice.Small20095112613410.1002/smll.200800003 19051182
    [Google Scholar]
  144. ChiX. ZhangR. ZhaoT. GongX. WeiR. YinZ. LinH. LiD. ShanH. GaoJ. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma.Nanotechnology2019301717510110.1088/1361‑6528/aaff9e 30654348
    [Google Scholar]
  145. GullottiE. ParkJ. YeoY. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.Pharm. Res.20133081956196710.1007/s11095‑013‑1039‑y 23609560
    [Google Scholar]
  146. TaoW. ZhangJ. ZengX. LiuD. LiuG. ZhuX. LiuY. YuQ. HuangL. MeiL. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy.Adv. Healthc. Mater.2015481203121410.1002/adhm.201400751 25800699
    [Google Scholar]
  147. LeeE.S. GaoZ. BaeY.H. Recent progress in tumor pH targeting nanotechnology.J. Control. Release2008132316417010.1016/j.jconrel.2008.05.003 18571265
    [Google Scholar]
  148. LiZ. ZhangH. HanJ. ChenY. LinH. YangT. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma.Adv. Mater.20183025170698110.1002/adma.201706981 29663543
    [Google Scholar]
  149. ChengR. FengF. MengF. DengC. FeijenJ. ZhongZ. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery.J. Control. Release2011152121210.1016/j.jconrel.2011.01.030 21295087
    [Google Scholar]
  150. SaeedA.O. NewlandB. PanditA. WangW. The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage.Chem. Commun. (Camb.)201248458558710.1039/C1CC16538K 22113516
    [Google Scholar]
  151. LiZ. HanJ. YuL. QianX. XingH. LinH. WuM. YangT. ChenY. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers.Adv. Funct. Mater.20182826180014510.1002/adfm.201800145
    [Google Scholar]
  152. MilosevicM. FylesA. HedleyD. HillR. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure.Semin. Radiat. Oncol.200414324925810.1016/j.semradonc.2004.04.006 15254868
    [Google Scholar]
  153. KhawarI.A. KimJ.H. KuhH.J. Improving drug delivery to solid tumors: Priming the tumor microenvironment.J. Control. Release2015201788910.1016/j.jconrel.2014.12.018 25526702
    [Google Scholar]
  154. ChenB. DaiW. MeiD. LiuT. LiS. HeB. HeB. YuanL. ZhangH. WangX. ZhangQ. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system.J. Control. Release2016241688010.1016/j.jconrel.2016.09.014 27641831
    [Google Scholar]
  155. PercheF. BiswasS. WangT. ZhuL. TorchilinV.P. Hypoxia‐Targeted siRNA Delivery.Angew. Chem. Int. Ed.201453133362336610.1002/anie.201308368 24554550
    [Google Scholar]
  156. WuB. ShangH. LiangX. SunY. JingH. HanX. ChengW. Preparation of novel targeting nanobubbles conjugated with small interfering RNA for concurrent molecular imaging and gene therapy in vivo.FASEB J.20193312141291413610.1096/fj.201900716RR 31657628
    [Google Scholar]
  157. LiuZ. ZhangJ. TianY. ZhangL. HanX. WangQ. ChengW. Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy.Int. J. Nanomedicine2018137859787210.2147/IJN.S181268 30538464
    [Google Scholar]
  158. WangR. LuoY. YangS. LinJ. GaoD. ZhaoY. LiuJ. ShiX. WangX. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma.Sci. Rep.2016613384410.1038/srep33844 27653258
    [Google Scholar]
  159. ShenJ.M. LiX.X. FanL.L. ZhouX. HanJ.M. JiaM.K. WuL.F. ZhangX.X. ChenJ. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma.Int. J. Nanomedicine2017121183120010.2147/IJN.S126887 28243083
    [Google Scholar]
  160. MintzK. WaidelyE. ZhouY. PengZ. Al-YoubiA.O. BashammakhA.S. El-ShahawiM.S. LeblancR.M. Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase.Anal. Chim. Acta2018104111412110.1016/j.aca.2018.08.055 30340683
    [Google Scholar]
  161. ZhangN. LuC. ShuG. LiJ. ChenM. ChenC. LvX. XuX. WengW. WengQ. TangB. DuY.Z. JiJ. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and primary hepatocellular carcinoma.Biomater. Sci.2020871961197210.1039/C9BM01544B 32064471
    [Google Scholar]
  162. WangZ. ChangZ. LuM. ShaoD. YueJ. YangD. ZhengX. LiM. HeK. ZhangM. ChenL. DongW. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma.Biomaterials201815414715710.1016/j.biomaterials.2017.10.047 29128843
    [Google Scholar]
  163. WangJ. ZhouY. GuoS. WangY. NieC. WangH. WangJ. ZhaoY. LiX. ChenX. Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug delivery of liver cancer therapy.Mater. Sci. Eng. C20177694495010.1016/j.msec.2017.03.131 28482611
    [Google Scholar]
  164. WuD. YuY. JinD. XiaoM.M. ZhangZ.Y. ZhangG.J. Dual-aptamer modifed graphene feld-efect transistor nanosensor for label-free and specifc detection of hepatocellular carcinoma-derived microvesicles.Anal. Chem.20209254006401510.1021/acs.analchem.9b05531 32040907
    [Google Scholar]
  165. WuC. LiP. FanN. HanJ. ZhangW. ZhangW. TangB. A dual-targeting functionalized graphene flm for rapid and highly sensitive fuorescence imaging detection of hepatocellular carcinoma circulating tumor cells.ACS Appl. Mater. Interfaces20191148449994500610.1021/acsami.9b18410 31714050
    [Google Scholar]
  166. MaX. JinY. WangY. ZhangS. PengD. YangX. WeiS. ChaiW. LiX. TianJ. Multimodality molecular imaging-guided tumor border delineation and photothermal therapy analysis based on graphene oxide-conjugated gold nanoparticles chelated with Gd.Contrast Media Mol. Imaging2018201811410.1155/2018/9321862 29853812
    [Google Scholar]
  167. LiuF. LiX. LiY. QiY. YuanH. HeJ. LiW. ZhouM. Designing pH-triggered drug release iron oxide nanocomposites for MRI-guided photothermal-chemoembolization therapy of liver orthotopic cancer.Biomater. Sci.2019751842185110.1039/C9BM00056A 30942214
    [Google Scholar]
  168. XuY.H. YangJ. MengJ. WangH. Targeted MR imaging adopting T1-weighted ultra-small iron oxide nanoparticles for early hepatocellular carcinoma: an in vitro and in vivo study.Chin. Med. Sci. J.2020352142150 32684234
    [Google Scholar]
  169. SicilianoG. CorricelliM. IacobazziR.M. CanepaF. ComegnaD. FanizzaE. Del GattoA. SavianoM. LaquintanaV. ComparelliR. MascoloG. MurgoloS. StriccoliM. AgostianoA. DenoraN. ZaccaroL. CurriM.L. DepaloN. Gold-speckled SPION@SiO(2) nanoparticles decorated with thiocarbohydrates for ASGPR1 targeting: towards HCC dual mode imaging potential applications.Chemistry20202648110481105910.1002/chem.202002142 32628283
    [Google Scholar]
  170. FukudaK. MoriK. HasegawaN. NasuK. IshigeK. OkamotoY. ShiigaiM. AbeiM. MinamiM. HyodoI. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a prospective study using magnetic resonance imaging with superparamagnetic iron oxide.Jpn. J. Radiol.201937755556310.1007/s11604‑019‑00843‑1 31102138
    [Google Scholar]
  171. ZhangH. DengL. LiuH. MaiS. ChengZ. ShiG. ZengH. WuZ. Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe.Mater. Today Bio20221310022010.1016/j.mtbio.2022.100220 35243295
    [Google Scholar]
  172. LiuY. LiJ. LiuF. ZhangL. FengL. YuD. ZhangN. Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma.J. Biomed. Nanotechnol.201511461362210.1166/jbn.2015.1945 26310068
    [Google Scholar]
  173. HanY. AnY. JiaG. WangX. HeC. DingY. TangQ. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma.Nanoscale201810146511652310.1039/C7NR09717D 29569668
    [Google Scholar]
  174. ZhaoH. WuM. ZhuL. TianY. WuM. LiY. DengL. JiangW. ShenW. WangZ. MeiZ. LiP. RanH. ZhouZ. RenJ. Cell-penetrating peptide-modifed targeted drug-loaded phase-transformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma.Theranostics2018871892191010.7150/thno.22386 29556363
    [Google Scholar]
  175. LiH. ShiS. WuM. ShenW. RenJ. MeiZ. RanH. WangZ. TianY. GaoJ. ZhaoH. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma.Int. J. Nanomedicine2021166455647510.2147/IJN.S325891 34584411
    [Google Scholar]
  176. LiuJ. RenL. LiS. LiW. ZhengX. YangY. FuW. YiJ. WangJ. DuG. The biology, function, and applications of exosomes in cancer.Acta Pharm. Sin. B20211192783279710.1016/j.apsb.2021.01.001 34589397
    [Google Scholar]
  177. LiuY. ChenZ. LiuC. YuD. LuZ. ZhangN. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.Biomaterials201132225167517610.1016/j.biomaterials.2011.03.077 21521627
    [Google Scholar]
  178. ShiZ. ChuC. ZhangY. SuZ. LinH. PangX. WangX. LiuG. LiW. Self-assembled metalorganic nanoparticles for multimodal imaging-guided photothermal therapy of hepatocellular carcinoma.J. Biomed. Nanotechnol.201814111934194310.1166/jbn.2018.2636 30165929
    [Google Scholar]
  179. Najahi-MissaouiW. ArnoldR.D. Safe nanoparticles: are we there yet?IJMS2020
    [Google Scholar]
  180. PanL. LiuJ. HeQ. ShiJ. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression.Adv. Mater.201426396742674810.1002/adma.201402752 25159109
    [Google Scholar]
  181. LiuX. SunY. XuS. GaoX. KongF. XuK. TangB. Homotypic cell membranecloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma.Theranostics20199205828583810.7150/thno.34837 31534522
    [Google Scholar]
  182. LiangY.J. YuH. FengG. ZhuangL. XiW. MaM. ChenJ. GuN. ZhangY. High-performance poly(lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsifcation for transcatheter arterial embolization and magnetic ablation in VX(2) liver tumors.ACS Appl. Mater. Interfaces2017950434784348910.1021/acsami.7b14330 29116741
    [Google Scholar]
  183. MondalJ. Khuda-BukhshA.R. Cisplatin and farnesol co encapsulated PLGA nano-particles demonstrate enhanced anti cancer potential against hepatocellular carcinoma cells in vitro.Mol. Biol. Rep.20204753615362810.1007/s11033‑020‑05455‑x 32314187
    [Google Scholar]
  184. YaoQ. DaiZ. Hoon ChoiJ. KimD. ZhuL. Building stable MMP2-responsive multifunctional polymeric micelles by an all-in one polymer-lipid conjugate for tumor-targeted intracellular drug delivery.ACS Appl. Mater. Interfaces2017938325203253310.1021/acsami.7b09511 28870072
    [Google Scholar]
  185. JinX. SunP. TongG. ZhuX. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.Biomaterials201817873875010.1016/j.biomaterials.2018.01.051 29429845
    [Google Scholar]
  186. ZhuangW. XuY. LiG. HuJ. MaB. YuT. SuX. WangY. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy.ACS Appl. Mater. Interfaces20181022184891849810.1021/acsami.8b02890 29737837
    [Google Scholar]
  187. DingY. XuH. XuC. TongZ. ZhangS. BaiY. ChenY. XuQ. ZhouL. DingH. SunZ. YanS. MaoZ. WangW. A nanomedicine fabricated from gold nanoparticles-decorated metal organic framework for cascade chemo/chemodynamic cancer therapy.Adv. Sci. (Weinh.)2020717200106010.1002/advs.202001060 32995124
    [Google Scholar]
  188. KalluriR. The biology and function of exosomes in cancer.J. Clin. Invest.201612641208121510.1172/JCI81135 27035812
    [Google Scholar]
  189. LiC. XuX. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma.Cell. Mol. Life Sci.201976214203421910.1007/s00018‑019‑03215‑0 31300868
    [Google Scholar]
  190. CocucciE. MeldolesiJ. Ectosomes and exosomes: shedding the confusion between extracellular vesicles.Trends Cell Biol.201525636437210.1016/j.tcb.2015.01.004 25683921
    [Google Scholar]
  191. Rios-ColonL. ArthurE. NitureS. QiQ. MooreJ.T. KumarD. The role of exosomes in the crosstalk between adipocytes and liver cancer cells.Cells202099198810.3390/cells9091988 32872417
    [Google Scholar]
  192. WuQ. ZhouL. LvD. ZhuX. TangH. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression.J. Hematol. Oncol.20191215310.1186/s13045‑019‑0739‑0 31142326
    [Google Scholar]
  193. AbudoureyimuM. ZhouH. ZhiY. WangT. FengB. WangR. ChuX. Recent progress in the emerging role of exosome in hepatocellular carcinoma.Cell Prolif.2019522e1254110.1111/cpr.12541 30397975
    [Google Scholar]
  194. HeR. WangZ. ShiW. YuL. XiaH. HuangZ. LiuS. ZhaoX. XuY. YamJ.W.P. CuiY. Exosomes in hepatocellular carcinoma microenvironment and their potential clinical application value.Biomed. Pharmacother.202113811152910.1016/j.biopha.2021.111529 34311529
    [Google Scholar]
  195. GeY. MuW. BaQ. LiJ. JiangY. XiaQ. WangH. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application.Cancer Lett.2020477414810.1016/j.canlet.2020.02.003 32112905
    [Google Scholar]
  196. LohX.J. LeeT.C. DouQ. DeenG.R. Utilising inorganic nanocarriers for gene delivery.Biomater. Sci.201641708610.1039/C5BM00277J 26484365
    [Google Scholar]
  197. ThomasM. KlibanovA.M. Non-viral gene therapy: polycation mediated DNA delivery.Appl. Microbiol. Biotechnol.2003621273410.1007/s00253‑003‑1321‑8 12719940
    [Google Scholar]
  198. ElahiN. KamaliM. BaghersadM.H. Recent biomedical applications of gold nanoparticles: A review.Talanta201818453755610.1016/j.talanta.2018.02.088 29674080
    [Google Scholar]
  199. LiN. ZhaoP. AstrucD. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity.Angew. Chem. Int. Ed.20145371756178910.1002/anie.201300441 24421264
    [Google Scholar]
  200. YehY.C. CreranB. RotelloV.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology.Nanoscale2012461871188010.1039/C1NR11188D 22076024
    [Google Scholar]
  201. ZengS. YongK.T. RoyI. DinhX.Q. YuX. LuanF. A review on functionalized gold nanoparticles for biosensing applications.Plasmonics20116349150610.1007/s11468‑011‑9228‑1
    [Google Scholar]
  202. NorouziH. KhoshgardK. AkbarzadehF. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review.Lasers Med. Sci.201833491792610.1007/s10103‑018‑2467‑z 29492712
    [Google Scholar]
  203. HaumeK. RosaS. GrelletS. ŚmiałekM.A. ButterworthK.T. Solov’yovA.V. PriseK.M. GoldingJ. MasonN.J. Gold nanoparticles for cancer radiotherapy: a review.Cancer Nanotechnol.20167182710.1186/s12645‑016‑0021‑x 27867425
    [Google Scholar]
  204. ChangY. YanW. HeX. ZhangL. LiC. HuangH. NaceG. GellerD.A. LinJ. TsungA. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions.Gastroenterology20121431177187.e810.1053/j.gastro.2012.04.009 22504094
    [Google Scholar]
  205. AsharaniP.V. lianwuY. GongZ. ValiyaveettilS. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.Nanotoxicology201151435410.3109/17435390.2010.489207 21417687
    [Google Scholar]
  206. StepanovA. GolubevA. NikitinS. OsinY. A review on the fabrication and properties of platinum nanoparticles.Rev. Adv. Mater. Sci.2014382160175
    [Google Scholar]
  207. JaganathanA. MuruganK. PanneerselvamC. MadhiyazhaganP. DineshD. VadivalaganC. AzizA.T. ChandramohanB. SureshU. RajaganeshR. SubramaniamJ. NicolettiM. HiguchiA. AlarfajA.A. MunusamyM.A. KumarS. BenelliG. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes.Parasitol. Int.201665327628410.1016/j.parint.2016.02.003 26873539
    [Google Scholar]
  208. SarataleR.G. ShinH.S. KumarG. BenelliG. KimD.S. SarataleG.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2).Artif. Cells Nanomed. Biotechnol.201846121122210.1080/21691401.2017.1337031 28612655
    [Google Scholar]
  209. KarimzadehK.; Elham sharifi,; Bakhshi, N.; Ramzanpoor, M. Biogenic silver nanoparticles using Oxalis corniculata characterization and their clinical implications.J. Drug Deliv. Sci. Technol.20195410126310127810.1016/j.jddst.2019.101263
    [Google Scholar]
  210. AhmadianE. DizajS.M. RahimpourE. HasanzadehA. EftekhariA. Hosain zadeganH. HalajzadehJ. AhmadianH. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line.Mater. Sci. Eng. C20189346547110.1016/j.msec.2018.08.027 30274079
    [Google Scholar]
  211. ShoshanM.S. VonderachT. HattendorfB. WennemersH. Peptide-coated platinum nanoparticles with selective toxicity against liver cancer cells.Angew. Chem. Int. Ed.201958154901490510.1002/anie.201813149 30561882
    [Google Scholar]
  212. GeorgeJ.M. AntonyA. MathewB. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review.Mikrochim. Acta2018185735838310.1007/s00604‑018‑2894‑3 29974265
    [Google Scholar]
  213. SarkarA. GhoshM. SilP.C. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.J. Nanosci. Nanotechnol.201414173074310.1166/jnn.2014.8752 24730293
    [Google Scholar]
  214. LaurentS. ForgeD. PortM. RochA. RobicC. Vander ElstL. MullerR.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  215. WahajuddinS.A. AroraS. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers.Int. J. Nanomedicine201273445347110.2147/IJN.S30320 22848170
    [Google Scholar]
  216. LaurentS. DutzS. HäfeliU.O. MahmoudiM. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles.Adv. Colloid Interface Sci.20111661-282310.1016/j.cis.2011.04.003 21601820
    [Google Scholar]
  217. MaengJ.H. LeeD.H. JungK.H. BaeY.H. ParkI.S. JeongS. JeonY.S. ShimC.K. KimW. KimJ. LeeJ. LeeY.M. KimJ.H. KimW.H. HongS.S. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer.Biomaterials201031184995500610.1016/j.biomaterials.2010.02.068 20347138
    [Google Scholar]
  218. DepaloN. IacobazziR.M. ValenteG. ArduinoI. VillaS. CanepaF. LaquintanaV. FanizzaE. StriccoliM. CutrignelliA. LopedotaA. PorcelliL. AzzaritiA. FrancoM. CurriM.L. DenoraN. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma.Nano Res.20171072431244810.1007/s12274‑017‑1444‑3
    [Google Scholar]
  219. KandasamyG. SudameA. LuthraT. SainiK. MaityD. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment.ACS Omega2018343991400510.1021/acsomega.8b00207 30023884
    [Google Scholar]
  220. ZhaoP. LiM. WangY. ChenY. HeC. ZhangX. YangT. LuY. YouJ. LeeR.J. XiangG. Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles.Acta Biomater.20187224825510.1016/j.actbio.2018.03.022 29555460
    [Google Scholar]
  221. ZhaoP. WuS. ChengY. YouJ. ChenY. LiM. HeC. ZhangX. YangT. LuY. LeeR.J. HeX. XiangG. MiR-375 delivered by lipid-coated doxorubicin-calcium carbonate nanoparticles overcomes chemoresistance in hepatocellular carcinoma.Nanomedicine20171382507251610.1016/j.nano.2017.05.010 28577837
    [Google Scholar]
  222. WuJ.Y. WangZ. ZhangG. LuX. QiangG.H. HuW. JiA.L. WuJ.H. JiangC.P. Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy.Int. J. Nanomedicine2018131265128010.2147/IJN.S156328 29551896
    [Google Scholar]
  223. BauerI.W. LiS.P. HanY.C. YuanL. YinM.Z. Internalization of hydroxyapatite nanoparticles in liver cancer cells.J. Mater. Sci. Mater. Med.20081931091109510.1007/s10856‑007‑3124‑4 17701307
    [Google Scholar]
  224. YanhuaW. HaoH. LiY. ZhangS. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.Colloids Surf. B Biointerfaces201614029730610.1016/j.colsurfb.2015.12.056 26764116
    [Google Scholar]
  225. FangX. WuX. LiC. ZhouB. ChenX. ChenT. YangF. Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer.RSC Advances20177148178818510.1039/C6RA28229F
    [Google Scholar]
  226. XiaY. ZhongJ. ZhaoM. TangY. HanN. HuaL. XuT. WangC. ZhuB. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma.Drug Deliv.201926111110.1080/10717544.2018.1556359 31928356
    [Google Scholar]
  227. MergetR. BauerT. KüpperH. PhilippouS. BauerH. BreitstadtR. BrueningT. Health hazards due to the inhalation of amorphous silica.Arch. Toxicol.20027511-1262563410.1007/s002040100266 11876495
    [Google Scholar]
  228. MeyerA. SandlerD.P. Beane FreemanL.E. HofmannJ.N. ParksC.G. Pesticide exposure and risk of rheumatoid arthritis among licensed male pesticide applicators in the agricultural health study.Environ. Health Perspect.2017125707701007701610.1289/EHP1013 28718769
    [Google Scholar]
  229. WuS.H. MouC.Y. LinH.P. Synthesis of mesoporous silica nanoparticles.Chem. Soc. Rev.20134293862387510.1039/c3cs35405a 23403864
    [Google Scholar]
  230. LiaoY-T. LiuC-H. YuJ. WuK.C. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.Int. J. Nanomedicine2014927672778 24940057
    [Google Scholar]
  231. LiT. ChenX. LiuY. FanL. LinL. XuY. ChenS. ShaoJ. pH-Sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer.Eur. J. Pharm. Sci.20179645646310.1016/j.ejps.2016.10.019 27771513
    [Google Scholar]
  232. LvY. LiJ. ChenH. BaiY. ZhangL. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier.Int. J. Nanomedicine2017124361437010.2147/IJN.S135626 28652738
    [Google Scholar]
  233. XueH. YuZ. LiuY. YuanW. YangT. YouJ. HeX. LeeR.J. LiL. XuC. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma.Int. J. Nanomedicine2017125271528710.2147/IJN.S135306 28769563
    [Google Scholar]
  234. RahmanM. AlmalkiW.H. AlrobaianM. IqbalJ. AlghamdiS. AlharbiK.S. AlruwailiN.K. HafeezA. ShaharyarA. SinghT. WarisM. KumarV. BegS. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma.Expert Opin. Drug Deliv.202118448951310.1080/17425247.2021.1854223 33225771
    [Google Scholar]
  235. DelgadoC. FrancisG.E. FisherD. The uses and properties of PEG-linked proteins.Crit. Rev. Ther. Drug Carrier Syst.199293-4249304 1458545
    [Google Scholar]
  236. KarakotiA.S. DasS. ThevuthasanS. SealS. PEGylated inorganic nanoparticles.Angew. Chem. Int. Ed.20115091980199410.1002/anie.201002969 21275011
    [Google Scholar]
  237. GhitmanJ. BiruE.I. StanR. IovuH. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine.Mater. Des.202019310880510882410.1016/j.matdes.2020.108805
    [Google Scholar]
  238. WuB. LiangY. TanY. XieC. ShenJ. ZhangM. LiuX. YangL. ZhangF. LiuL. CaiS. HuaiD. ZhengD. ZhangR. ZhangC. ChenK. TangX. SuiX. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer.Mater. Sci. Eng. C20165979280010.1016/j.msec.2015.10.087 26652434
    [Google Scholar]
  239. ChenY. LiuY.C. SungY.C. RamjiawanR.R. LinT.T. ChangC.C. JengK.S. ChangC.F. LiuC.H. GaoD.Y. HsuF.F. DuyvermanA.M. KitaharaS. HuangP. DimaS. PopescuI. FlahertyK.T. ZhuA.X. BardeesyN. JainR.K. BenesC.H. DudaD.G. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors.Sci. Rep.2017714412310.1038/srep44123 28276530
    [Google Scholar]
  240. ZhuD. TaoW. ZhangH. LiuG. WangT. ZhangL. ZengX. MeiL. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.Acta Biomater.20163014415410.1016/j.actbio.2015.11.031 26602819
    [Google Scholar]
  241. LiuH. GaoM. XuH. GuanX. LvL. DengS. ZhangC. TianY. A promising emodin-loaded poly (lactic-co-glycolic acid)-d-a-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy.Pharm. Res.201633121723610.1007/s11095‑015‑1781‑4 26334502
    [Google Scholar]
  242. WangJ. WangH. LiJ. LiuZ. XieH. WeiX. LuD. ZhuangR. XuX. ZhengS. iRGD-decorated polymeric nanoparticles for the efficient delivery of vandetanib to hepatocellular carcinoma: preparation and in vitro and in vivo evaluation.ACS Appl. Mater. Interfaces2016830192281923710.1021/acsami.6b03166 27381493
    [Google Scholar]
  243. QinJ. YinP-H. LiQ. SaZ-Q. ShengX. YangL. HuangT. ZhangM. GaoK-P. ChenQ-H. MaJ.W. ShenH.B. Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma.Int. J. Nanomedicine2012736937910.2147/IJN.S27226 22334771
    [Google Scholar]
  244. QinJ. YangL. ShengX. SaZ. HuangT. LiQ. GaoK. ChenQ. MaJ. ShenH. Antitumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma in vivo.Oncol. Lett.20181556137614610.3892/ol.2018.8168 29731843
    [Google Scholar]
  245. ZhengN. LiuW. LiB. NieH. LiuJ. ChengY. WangJ. DongH. JiaL. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib.J. Exp. Clin. Cancer Res.201938123210.1186/s13046‑019‑1216‑x 31151472
    [Google Scholar]
  246. WangH. ZhouL. XieK. WuJ. SongP. XieH. ZhouL. LiuJ. XuX. ShenY. ZhengS. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma.Theranostics20188143949396310.7150/thno.26161 30083272
    [Google Scholar]
  247. ZhangY. CuiZ. MeiH. XuJ. ZhouT. ChengF. WangK. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer.Carbohydr. Polym.201921914315410.1016/j.carbpol.2019.04.041 31151511
    [Google Scholar]
  248. HuangL. ChaurasiyaB. WuD. WangH. DuY. TuJ. WebsterT.J. SunC. Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy.Nanomedicine20181431005101710.1016/j.nano.2018.01.015 29409820
    [Google Scholar]
  249. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  250. TangP. SunQ. YangH. TangB. PuH. LiH. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer.Int. J. Pharm.20185451-2748310.1016/j.ijpharm.2018.04.060 29715531
    [Google Scholar]
  251. KouC.H. HanJ. HanX.L. ZhuangH.J. ZhaoZ.M. Preparation and characterization of the Adriamycin loaded amphiphilic chitosan nanoparticles and their application in the treatment of liver cancer.Oncol. Lett.20171467833784110.3892/ol.2017.7210 29344229
    [Google Scholar]
  252. LoutfyS.A. El-DinH.M.A. ElberryM.H. AllamN.G. HasaninM. AbdellahA.M. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv. Nat. Sci.-.Nanosci. Nanotechnol.201673035008035006
    [Google Scholar]
  253. ChengM. ZhuW. LiQ. DaiD. HouY. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer.Oncotarget2017835590685908510.18632/oncotarget.19146 28938619
    [Google Scholar]
  254. ZhaoX. ChenQ. LiuW. LiY. TangH. LiuX. YangX. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer.Int. J. Nanomedicine201410257270 25565818
    [Google Scholar]
  255. ZhangJ. HuJ. ChanH.F. SkibbaM. LiangG. ChenM. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy.Nanomedicine20161251303131110.1016/j.nano.2016.01.017 26964482
    [Google Scholar]
  256. WuC-H. LanC-H. WuK-L. WuY.M. JaneW-N. HsiaoM. WuH-C. Hepatocellular carcinoma-targeted nanoparticles for cancer therapy.Int. J. Oncol.2018522389401 29207071
    [Google Scholar]
  257. ZhaoH. WuM. ZhuL. TianY. WuM. LiY. DengL. JiangW. ShenW. WangZ. MeiZ. LiP. RanH. ZhouZ. RenJ. Cell-penetrating peptide-modified targeted drug-loaded phasetransformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma.Theranostics2018871892191010.7150/thno.22386 29556363
    [Google Scholar]
  258. NamdariP. NegahdariB. EatemadiA. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review.Biomed. Pharmacother.20178720922210.1016/j.biopha.2016.12.108 28061404
    [Google Scholar]
  259. MintzK.J. ZhouY. LeblancR.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure.Nanoscale201911114634465210.1039/C8NR10059D 30834912
    [Google Scholar]
  260. MintzK.J. GuerreroB. LeblancR.M. Photoinduced electron transfer in carbon dots with long-wavelength photoluminescence.J. Phys. Chem. C201812251295072951510.1021/acs.jpcc.8b06868
    [Google Scholar]
  261. MintzK.J. BartoliM. RovereM. ZhouY. HettiarachchiS.D. PaudyalS. ChenJ. DomenaJ.B. LiyanageP.Y. SampsonR. KhadkaD. PandeyR.R. HuangS. ChusueiC.C. TagliaferroA. LeblancR.M. A deep investigation into the structure of carbon dots.Carbon202117343344710.1016/j.carbon.2020.11.017
    [Google Scholar]
  262. SongY. ZhuS. ZhangS. FuY. WangL. ZhaoX. YangB. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine.J. Mater. Chem. C Mater. Opt. Electron. Devices20153235976598410.1039/C5TC00813A
    [Google Scholar]
  263. YanF. JiangY. SunX. BaiZ. ZhangY. ZhouX. Surface modification and chemical functionalization of carbon dots: a review.Mikrochim. Acta2018185942445710.1007/s00604‑018‑2953‑9 30128831
    [Google Scholar]
  264. GadzhimagomedovaZ. ZolotukhinP. KitO. KirsanovaD. SoldatovA. Nanocomposites for X-Ray photodynamic therapy.IJMS202010.3390/ijms21114004
    [Google Scholar]
  265. KirsanovaD.Y. GadzhimagomedovaZ.M. MaksimovA.Y. SoldatovA.V. Nanomaterials for deep tumor treatment.Mini Rev. Med. Chem.202121667768810.2174/1389557520666201111161705 33176645
    [Google Scholar]
  266. SebakA.A. El-ShenawyB.M. El-SafyS. El-ShazlyM. From passive targeting to personalized nanomedicine: multidimensional insights on nanoparticles’ interaction with the tumor microenvironment.Curr. Pharm. Biotechnol.202122111444146510.2174/1389201021666201211103856 33308126
    [Google Scholar]
  267. WangY. WangZ. XuC. TianH. ChenX. A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy.Biomaterials201919728429310.1016/j.biomaterials.2019.01.025 30677557
    [Google Scholar]
  268. ZhangL. ZhangM. ZhouL. HanQ. ChenX. LiS. LiL. SuZ. WangC. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics.Biomaterials201818111312510.1016/j.biomaterials.2018.07.060 30081302
    [Google Scholar]
  269. MiaoL. QiJ. ZhaoQ. WuQ.N. WeiD.L. WeiX.L. LiuJ. ChenJ. ZengZ.L. JuH.Q. LuoH. XuR.H. Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells.Theranostics202010249851510.7150/thno.37745 31903134
    [Google Scholar]
  270. WeichandB. PoppR. DziumblaS. MoraJ. StrackE. ElwakeelE. FrankA.C. ScholichK. PierreS. SyedS.N. OleschC. RinglebJ. ÖrenB. DöringC. SavaiR. JungM. von KnethenA. LevkauB. FlemingI. WeigertA. BrüneB. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β.J. Exp. Med.201721492695271310.1084/jem.20160392 28739604
    [Google Scholar]
  271. PettyA.J. YangY. Tumor-associated macrophages: implications in cancer immunotherapy.Immunotherapy20179328930210.2217/imt‑2016‑0135 28231720
    [Google Scholar]
  272. NgambenjawongC. GustafsonH.H. PunS.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics.Adv. Drug Deliv. Rev.201711420622110.1016/j.addr.2017.04.010 28449873
    [Google Scholar]
  273. ZhangK. MengX. YangZ. DongH. ZhangX. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem.Biomaterials202025812027810.1016/j.biomaterials.2020.120278 32781328
    [Google Scholar]
  274. XuW. WangJ. LiQ. WuC. WuL. LiK. LiQ. HanQ. ZhuJ. BaiY. DengJ. LyuJ. WangZ. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy.J. Mater. Chem. B Mater. Biol. Med.20219388031803710.1039/D1TB00788B 34486010
    [Google Scholar]
  275. DingY. SunZ. TongZ. ZhangS. MinJ. XuQ. ZhouL. MaoZ. XiaH. WangW. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy.Theranostics202010125195520810.7150/thno.45017 32373207
    [Google Scholar]
  276. YangY. YuY. ChenH. MengX. MaW. YuM. LiZ. LiC. LiuH. ZhangX. XiaoH. YuZ. illuminating platinum transportation while maximizing therapeutic efcacy by gold nanoclusters via simultaneous near-infrared-i/ii imaging and glutathione scavenging.ACS Nano20201410135361354710.1021/acsnano.0c05541 32924505
    [Google Scholar]
  277. YangY. LiuX. MaW. XuQ. ChenG. WangY. XiaoH. LiN. LiangX.J. YuM. YuZ. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy.Biomaterials202126512045610.1016/j.biomaterials.2020.120456 33099066
    [Google Scholar]
  278. SunT. HanJ. LiuS. WangX. WangZ.Y. XieZ. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer.ACS Nano20191367345735410.1021/acsnano.9b03910 31188558
    [Google Scholar]
  279. ZhangY. WangX. ChuC. ZhouZ. ChenB. PangX. LinG. LinH. GuoY. RenE. LvP. ShiY. ZhengQ. YanX. ChenX. LiuG. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics.Nat. Commun.2020111542110.1038/s41467‑020‑19061‑933110072
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096336494240915164019
Loading
/content/journals/ccdt/10.2174/0115680096336494240915164019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test