Skip to content
2000
image of CDK8 as a Therapeutic Target for Overall Survival Prediction in Cervical Squamous Cell Carcinoma (CESC)

Abstract

Background

Cyclin-Dependent Kinase 8 (CDK8) is a paracrine transcriptional regulator involved in regulating cellular stress response, growth, and neurological functions in conjunction with mediator complex subunits 12 (MED12), MED13, and cyclin C.

Objective

Studying the relationship between CDK8 and cervical squamous cell carcinoma (CESC) has significant clinical implications in diagnosis, treatment, and prognosis. Therefore, we analyzed the relationship between CDK8 and poor prognosis of CESC.

Methods

Differentially expressed genes and their functional enrichment were analyzed using limma R software package. Immune cell infiltration was measured by TIMER and “GSVA” R packaging.

Results

The results indicated that CDK8 was overexpressed in CESC, and the survival rate of patients in the CDK8 hypermethylation group was higher than that in the CDK8 hypomethylation group. In addition, CDK8 was associated with immune cell infiltration in tumor tissues.

Conclusion

Overall, these findings provide more evidence for the relationship between CDK8 and a patients overall survival, which could provide insights into clinical diagnosis and prognosis prediction for CESC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096332050241022102545
2025-01-24
2025-04-04
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Chandra S. Sarkar S. Mandal P. Identification of novel genetic and epigenetic regulators of different tissue types of cervical cancer. J. Obstet. Gynaecol. Res. 2022 48 12 3179 3190 10.1111/jog.15454 36184073
    [Google Scholar]
  3. Lin S. Gao K. Gu S. You L. Qian S. Tang M. Wang J. Chen K. Jin M. Worldwide trends in cervical cancer incidence and mortality, with predictions for the next 15 years. Cancer 2021 127 21 4030 4039 10.1002/cncr.33795 34368955
    [Google Scholar]
  4. Kines R.C. Schiller J.T. Harnessing human papillomavirus’ natural tropism to target tumors. Viruses 2022 14 8 1656 10.3390/v14081656 36016277
    [Google Scholar]
  5. Zhang Z. Ma Q. Zhang L. Ma L. Wang D. Yang Y. Jia P. Wu Y. Wang F. Human papillomavirus and cervical cancer in the microbial world: Exploring the vaginal microecology. Front. Cell. Infect. Microbiol. 2024 14 1325500 10.3389/fcimb.2024.1325500 38333037
    [Google Scholar]
  6. Ding H. Xiong X.X. Fan G.L. Yi Y.X. Chen Y.R. Wang J.T. Zhang W. The new biomarker for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) based on public database mining. BioMed Res. Int. 2020 2020 1 9 10.1155/2020/5478574 32351997
    [Google Scholar]
  7. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers (Basel) 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  8. Rizzo A. Mollica V. Tateo V. Tassinari E. Marchetti A. Rosellini M. De Luca R. Santoni M. Massari F. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 2023 72 6 1381 1394 10.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  9. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support. Care Cancer 2023 31 11 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  10. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  11. Zhao L. Zhang Z. Lou H. Liang J. Yan X. Li W. Xu Y. Ou R. Exploration of the molecular mechanisms of cervical cancer based on mRNA expression profiles and predicted microRNA interactions. Oncol. Lett. 2018 15 6 8965 8972 10.3892/ol.2018.8494 29805632
    [Google Scholar]
  12. Yue S. Wang Q. Zhang J. Hu Q. Liu C. Understanding cervical cancer at single-cell resolution. Cancer Lett. 2023 576 216408 10.1016/j.canlet.2023.216408 37769795
    [Google Scholar]
  13. Voelker R.A. Cervical cancer screening. JAMA 2023 330 20 2030 10.1001/jama.2023.21987 37889510
    [Google Scholar]
  14. Ferrall L. Lin K.Y. Roden R.B.S. Hung C.F. Wu T.C. Cervical cancer immunotherapy: Facts and hopes. Clin. Cancer Res. 2021 27 18 4953 4973 10.1158/1078‑0432.CCR‑20‑2833 33888488
    [Google Scholar]
  15. Lee S.J. Yang A. Wu T.C. Hung C.F. Immunotherapy for human papillomavirus-associated disease and cervical cancer: Review of clinical and translational research. J. Gynecol. Oncol. 2016 27 5 e51 10.3802/jgo.2016.27.e51 27329199
    [Google Scholar]
  16. Della Corte L. Barra F. Foreste V. Giampaolino P. Evangelisti G. Ferrero S. Bifulco G. Advances in paclitaxel combinations for treating cervical cancer. Expert Opin. Pharmacother. 2020 21 6 663 677 10.1080/14656566.2020.1724284 32037907
    [Google Scholar]
  17. Gadducci A. Cosio S. Neoadjuvant chemotherapy in locally advanced cervical cancer: Review of the literature and perspectives of clinical research. Anticancer Res. 2020 40 9 4819 4828 10.21873/anticanres.14485 32878770
    [Google Scholar]
  18. Gennigens C. Jerusalem G. Lapaille L. De Cuypere M. Streel S. Kridelka F. Ray-Coquard I. Recurrent or primary metastatic cervical cancer: Current and future treatments. ESMO Open 2022 7 5 100579 10.1016/j.esmoop.2022.100579 36108558
    [Google Scholar]
  19. Bogani G. Coleman R.L. Vergote I. Raspagliesi F. Lorusso D. Monk B.J. Tisotumab vedotin in recurrent or metastatic cervical cancer. Curr. Probl. Cancer 2023 47 3 100952 10.1016/j.currproblcancer.2023.100952 36842202
    [Google Scholar]
  20. Le Gac M. Koual M. Delanoy N. Perkins G. Nguyen-Xuan H.T. Blons H. Le Frère-Belda M.A. Laurent-Puig P. Bentivegna E. Durdux C. Azaïs H. Bats A.S. Place of PARP inhibitors in the treatment of endometrial and cervical cancers. Bull. Cancer 2022 109 1 65 75 10.1016/j.bulcan.2021.09.011 34801228
    [Google Scholar]
  21. Bizzarri N. Ghirardi V. Alessandri F. Venturini P.L. Valenzano Menada M. Rundle S. Leone Roberti Maggiore U. Ferrero S. Bevacizumab for the treatment of cervical cancer. Expert Opin. Biol. Ther. 2016 16 3 407 419 10.1517/14712598.2016.1145208 26796332
    [Google Scholar]
  22. Šarenac T. Mikov M. Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease. Front. Pharmacol. 2019 10 484 10.3389/fphar.2019.00484 31214018
    [Google Scholar]
  23. Mackay H.J. Wenzel L. Mileshkin L. Nonsurgical management of cervical cancer: locally advanced, recurrent, and metastatic disease, survivorship, and beyond. Am. Soc. Clin. Oncol. Educ. Book 2015 35 e299 e309 10.14694/EdBook_AM.2015.35.e299 25993189
    [Google Scholar]
  24. Serkies K. Jassem J. Systemic therapy for cervical carcinoma – Current status. Chin. J. Cancer Res. 2018 30 2 209 221 10.21147/j.issn.1000‑9604.2018.02.04 29861606
    [Google Scholar]
  25. Rohaan M.W. Wilgenhof S. Haanen J.B.A.G. Adoptive cellular therapies: The current landscape. Virchows Arch. 2019 474 4 449 461 10.1007/s00428‑018‑2484‑0 30470934
    [Google Scholar]
  26. Legut M. Dolton G. Mian A.A. Ottmann O.G. Sewell A.K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 2018 131 3 311 322 10.1182/blood‑2017‑05‑787598 29122757
    [Google Scholar]
  27. Waldman A.D. Fritz J.M. Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020 20 11 651 668 10.1038/s41577‑020‑0306‑5 32433532
    [Google Scholar]
  28. Yu L. Lanqing G. Huang Z. Xin X. Minglin L. Fa-hui L. Zou H. Min J. T cell immunotherapy for cervical cancer: Challenges and opportunities. Front. Immunol. 2023 14 1105265 10.3389/fimmu.2023.1105265 37180106
    [Google Scholar]
  29. Etxeberria I. Bolaños E. Quetglas J.I. Gros A. Villanueva A. Palomero J. Sánchez-Paulete A.R. Piulats J.M. Matias-Guiu X. Olivera I. Ochoa M.C. Labiano S. Garasa S. Rodriguez I. Vidal A. Mancheño U. Hervás-Stubbs S. Azpilikueta A. Otano I. Aznar M.A. Sanmamed M.F. Inogés S. Berraondo P. Teijeira Á. Melero I. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T cells. Cancer Cell 2019 36 6 613 629.e7 10.1016/j.ccell.2019.10.006 31761658
    [Google Scholar]
  30. Li J. Xi J. Exploring immune-related gene profiling and infiltration of immune cells in cervical squamous cell carcinoma and endocervical adenocarcinoma. Genes (Basel) 2024 15 1 121 10.3390/genes15010121 38275602
    [Google Scholar]
  31. Yang C. Xia B.R. Zhang Z.C. Zhang Y.J. Lou G. Jin W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol. 2020 11 577869 10.3389/fimmu.2020.577869 33123161
    [Google Scholar]
  32. Cappello P. Bulfamante S. Mandili G. Novelli F. Discovery of targets for cancer immunoprevention. Methods Mol. Biol. 2022 2435 19 33 10.1007/978‑1‑0716‑2014‑4_3 34993937
    [Google Scholar]
  33. Sukari A. Abdallah N. Nagasaka M. Unleash the power of the mighty T cells-basis of adoptive cellular therapy. Crit. Rev. Oncol. Hematol. 2019 136 1 12 10.1016/j.critrevonc.2019.01.015 30878123
    [Google Scholar]
  34. Draper L.M. Kwong M.L.M. Gros A. Stevanović S. Tran E. Kerkar S. Raffeld M. Rosenberg S.A. Hinrichs C.S. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered t cells directed against E6. Clin. Cancer Res. 2015 21 19 4431 4439 10.1158/1078‑0432.CCR‑14‑3341 26429982
    [Google Scholar]
  35. Mantovani A. Marchesi F. Jaillon S. Garlanda C. Allavena P. Tumor-associated myeloid cells: Diversity and therapeutic targeting. Cell. Mol. Immunol. 2021 18 3 566 578 10.1038/s41423‑020‑00613‑4 33473192
    [Google Scholar]
  36. Stevanović S. Draper L.M. Langhan M.M. Campbell T.E. Kwong M.L. Wunderlich J.R. Dudley M.E. Yang J.C. Sherry R.M. Kammula U.S. Restifo N.P. Rosenberg S.A. Hinrichs C.S. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 2015 33 14 1543 1550 10.1200/JCO.2014.58.9093 25823737
    [Google Scholar]
  37. Li J. Adobo S.D. Shi H. Judicael K.A.W. Lin N. Gao L. Screening methods for cervical cancer. ChemMedChem 2024 19 16 e202400021 10.1002/cmdc.202400021 38735844
    [Google Scholar]
  38. Winer R.L. Lin J. Anderson M.L. Tiro J.A. Green B.B. Gao H. Meenan R.T. Hansen K. Sparks A. Buist D.S.M. Strategies to increase cervical cancer screening with mailed human papillomavirus self-sampling kits. JAMA 2023 330 20 1971 1981 10.1001/jama.2023.21471 38015219
    [Google Scholar]
  39. Xiang X. Kang J. Jiang J. Zhang Y. Zhang Y. Li L. Peng X. A novel DNA damage repair-related gene signature predicting survival, immune infiltration and drug sensitivity in cervical cancer based on single cell sequencing. Front. Immunol. 2023 14 1198391 10.3389/fimmu.2023.1198391 37449209
    [Google Scholar]
  40. Ding X. Sharko A.C. McDermott M.S.J. Schools G.P. Chumanevich A. Ji H. Li J. Zhang L. Mack Z.T. Sikirzhytski V. Shtutman M. Ivers L. O’Donovan N. Crown J. Győrffy B. Chen M. Roninson I.B. Broude E.V. Inhibition of CDK8/19 mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2022 119 32 e2201073119 10.1073/pnas.2201073119 35914167
    [Google Scholar]
  41. Niazmand A. Nedaeinia R. Vatandoost N. Jafarpour S. Safabakhsh S. Kolahdouz M. Ferns G.A. Salehi R. The impacts of dipeptidyl- peptidase 4 (DPP-4) inhibitors on common female malignancies: A systematic review. Gene 2024 927 148659 10.1016/j.gene.2024.148659 38866262
    [Google Scholar]
  42. Liao J.Z. Chung H. Shih C. Wong K.K.L. Dutta D. Nil Z. Burns C.G. Kanca O. Park Y.J. Zuo Z. Marcogliese P.C. Sew K. Bellen H.J. Verheyen E.M. Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila. Nat. Commun. 2024 15 1 3326 10.1038/s41467‑024‑47623‑8 38637532
    [Google Scholar]
  43. Mizuno N. Shiga S. Tanaka Y. Kimura T. Yanagawa Y. CDK8/19 inhibitor enhances arginase-1 expression in macrophages via STAT6 and p38 MAPK activation. Eur. J. Pharmacol. 2024 979 176852 10.1016/j.ejphar.2024.176852 39067565
    [Google Scholar]
  44. Khamidullina A.I. Abramenko Y.E. Bruter A.V. Tatarskiy V.V. Key proteins of replication stress response and cell cycle control as cancer therapy targets. Int. J. Mol. Sci. 2024 25 2 1263 10.3390/ijms25021263 38279263
    [Google Scholar]
  45. Ho T.Y. Sung T.Y. Pan S.L. Huang W.J. Hsu K.C. Hsu J.Y. Lin T.E. Hsu C.M. Yang C.R. The study of a novel CDK8 inhibitor E966-0530–45418 that inhibits prostate cancer metastasis in vitro and in vivo. Biomed. Pharmacother. 2023 162 114667 10.1016/j.biopha.2023.114667 37037092
    [Google Scholar]
  46. Knab V.M. Gotthardt D. Klein K. Grausenburger R. Heller G. Menzl I. Prinz D. Trifinopoulos J. List J. Fux D. Witalisz-Siepracka A. Sexl V. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance. Cell Death Dis. 2021 12 11 991 10.1038/s41419‑021‑04279‑2 34689158
    [Google Scholar]
  47. McDermott M.S.J. Chumanevich A.A. Lim C. Liang J. Chen M. Altilia S. Oliver D. Rae J.M. Shtutman M. Kiaris H. Győrffy B. Roninson I.B. Broude E.V. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget 2017 8 8 12558 12575 10.18632/oncotarget.14894 28147342
    [Google Scholar]
  48. Menzl I. Witalisz-Siepracka A. Sexl V. CDK8-Novel therapeutic opportunities. Pharmaceuticals (Basel) 2019 12 2 92 10.3390/ph12020092 31248103
    [Google Scholar]
  49. Philip S. Kumarasiri M. Teo T. Yu M. Wang S. Cyclin-dependent kinase 8: A new hope in targeted cancer therapy? J. Med. Chem. 2018 61 12 5073 5092 10.1021/acs.jmedchem.7b00901 29266937
    [Google Scholar]
  50. Roninson I.B. Győrffy B. Mack Z.T. Shtil A.A. Shtutman M.S. Chen M. Broude E.V. Identifying cancers impacted by CDK8/19. Cells 2019 8 8 821 10.3390/cells8080821 31382571
    [Google Scholar]
  51. Fant C.B. Taatjes D.J. Regulatory functions of the mediator kinases CDK8 and CDK19. Transcription 2019 10 2 76 90 10.1080/21541264.2018.1556915 30585107
    [Google Scholar]
  52. Straub J. Venigalla S. Newman J.J. Mediator’s kinase module: A modular regulator of cell fate. Stem Cells Dev. 2020 29 24 1535 1551 10.1089/scd.2020.0164 33161841
    [Google Scholar]
  53. Youn D.Y. Xiaoli A.M. Kwon H. Yang F. Pessin J.E. The subunit assembly state of the Mediator complex is nutrient-regulated and is dysregulated in a genetic model of insulin resistance and obesity. J. Biol. Chem. 2019 294 23 9076 9083 10.1074/jbc.RA119.007850 31028171
    [Google Scholar]
  54. Rizzo A. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate. Br. J. Cancer 2022 127 8 1381 1382 10.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  55. Hofmann M.H. Mani R. Engelhardt H. Impagnatiello M.A. Carotta S. Kerenyi M. Lorenzo-Herrero S. Böttcher J. Scharn D. Arnhof H. Zoephel A. Schnitzer R. Gerstberger T. Sanderson M.P. Rajgolikar G. Goswami S. Vasu S. Ettmayer P. Gonzalez S. Pearson M. McConnell D.B. Kraut N. Muthusamy N. Moll J. Selective and potent CDK8/19 inhibitors enhance NK-cell activity and promote tumor surveillance. Mol. Cancer Ther. 2020 19 4 1018 1030 10.1158/1535‑7163.MCT‑19‑0789 32024684
    [Google Scholar]
  56. Al-Sanea M.M. Synthesis and biological evaluation of small molecule modulators of CDK8/Cyclin C complex with phenylaminoquinoline scaffold. PeerJ 2020 8 e8649 10.7717/peerj.8649 32206448
    [Google Scholar]
  57. RETRACTION: LINC01224 accelerates malignant transformation via MiR-193a-5p/CDK8 axis in gastric cancer. Cancer Med. 2024 13 11 e7337 10.1002/cam4.7337 38813645
    [Google Scholar]
  58. Wang D. Zhou Y. Hua L. Li J. Zhu N. Liu Y. CDK3, CDK5 and CDK8 proteins as prognostic and potential biomarkers in colorectal cancer patients. Int. J. Gen. Med. 2022 15 2233 2245 10.2147/IJGM.S349576 35250301
    [Google Scholar]
  59. Liu G. Zhang Z. Song Q. Guo Y. Bao P. Shui H. Circ_0006528 contributes to paclitaxel resistance of breast cancer cells by regulating miR-1299/CDK8 axis. OncoTargets Ther. 2020 13 9497 9511 10.2147/OTT.S252886 33061434
    [Google Scholar]
  60. Zhen L. Pan W. ALKBH5 inhibits the SIRT3/ACC1 axis to regulate fatty acid metabolism via an m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma. Clin. Exp. Pharmacol. Physiol. 2023 50 5 380 392 10.1111/1440‑1681.13754 36705046
    [Google Scholar]
  61. Zhou J. Xu L. Zhou H. Wang J. Xing X. Prediction of prognosis and chemotherapeutic sensitivity based on cuproptosis-associated lncRNAs in cervical squamous cell carcinoma and endocervical adenocarcinoma. Genes (Basel) 2023 14 7 1381 10.3390/genes14071381 37510286
    [Google Scholar]
  62. Goldstone S.E. Human papillomavirus (HPV) vaccines in adults: Learnings from long-term follow-up of quadrivalent HPV vaccine clinical trials. Hum. Vaccin. Immunother. 2023 19 1 2184760 10.1080/21645515.2023.2184760 36916016
    [Google Scholar]
  63. Ramos da Silva J. Bitencourt Rodrigues K. Formoso Pelegrin G. Silva Sales N. Muramatsu H. de Oliveira Silva M. Porchia B.F.M.M. Moreno A.C.R. Aps L.R.M.M. Venceslau-Carvalho A.A. Tombácz I. Fotoran W.L. Karikó K. Lin P.J.C. Tam Y.K. de Oliveira Diniz M. Pardi N. de Souza Ferreira L.C. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci. Transl. Med. 2023 15 686 eabn3464 10.1126/scitranslmed.abn3464 36867683
    [Google Scholar]
  64. Williamson A.L. Recent developments in human papillomavirus (HPV) vaccinology. Viruses 2023 15 7 1440 10.3390/v15071440 37515128
    [Google Scholar]
  65. Yuan M. Zhao X. Wang H. Hu S. Zhao F. Trend in cervical cancer incidence and mortality rates in China, 2006–2030: A Bayesian age-period-cohort modeling study. Cancer Epidemiol. Biomarkers Prev. 2023 32 6 825 833 10.1158/1055‑9965.EPI‑22‑0674 36944168
    [Google Scholar]
  66. Xi M. Chen T. Wu C. Gao X. Wu Y. Luo X. Du K. Yu L. Cai T. Shen R. Sun H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur. J. Med. Chem. 2019 164 77 91 10.1016/j.ejmech.2018.11.076 30594029
    [Google Scholar]
  67. Kalra S. Joshi G. Munshi A. Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur. J. Med. Chem. 2017 142 424 458 10.1016/j.ejmech.2017.08.071 28911822
    [Google Scholar]
  68. Wu D. Zhang Z. Chen X. Yan Y. Liu X. Angel or Devil? - CDK8 as the new drug target. Eur. J. Med. Chem. 2021 213 113043 10.1016/j.ejmech.2020.113043 33257171
    [Google Scholar]
  69. Sharko A.C. Lim C.U. McDermott M.S.J. Hennes C. Philavong K.P. Aiken T. Tatarskiy V.V. Roninson I.B. Broude E.V. The inhibition of CDK8/19 mediator kinases prevents the development of resistance to EGFR-targeting drugs. Cells 2021 10 1 144 10.3390/cells10010144 33445730
    [Google Scholar]
  70. Horvath R.M. Brumme Z.L. Sadowski I. CDK8 inhibitors antagonize HIV-1 reactivation and promote provirus latency in T cells. J. Virol. 2023 97 9 e00923-23 10.1128/jvi.00923‑23 37671866
    [Google Scholar]
  71. Horvath R.M. Brumme Z.L. Sadowski I. Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting “block and lock” treatment strategies. Antimicrob. Agents Chemother. 2024 68 3 e01072-23 10.1128/aac.01072‑23 38319085
    [Google Scholar]
  72. Witalisz-Siepracka A. Gotthardt D. Prchal-Murphy M. Didara Z. Menzl I. Prinz D. Edlinger L. Putz E.M. Sexl V. NK cell–specific CDK8 deletion enhances antitumor responses. Cancer Immunol. Res. 2018 6 4 458 466 10.1158/2326‑6066.CIR‑17‑0183 29386186
    [Google Scholar]
  73. Arnett A. Moo K.G. Flynn K.J. Sundberg T.B. Johannessen L. Shamji A.F. Gray N.S. Decker T. Zheng Y. Gersuk V.H. Rahman Z.S. Levy D.E. Marié I.J. Linsley P.S. Xavier R.J. Khor B. The cyclin-dependent kinase 8 (CDK8) inhibitor DCA promotes a tolerogenic chemical immunophenotype in CD4 + T cells via a novel CDK8-GATA3-FOXP3 pathway. Mol. Cell. Biol. 2021 41 9 e00085-21 10.1128/MCB.00085‑21 34124936
    [Google Scholar]
  74. Akamatsu M. Mikami N. Ohkura N. Kawakami R. Kitagawa Y. Sugimoto A. Hirota K. Nakamura N. Ujihara S. Kurosaki T. Hamaguchi H. Harada H. Xia G. Morita Y. Aramori I. Narumiya S. Sakaguchi S. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 2019 4 40 eaaw2707 10.1126/sciimmunol.aaw2707 31653719
    [Google Scholar]
  75. Putz E.M. Gotthardt D. Sexl V. STAT1-S727 - The license to kill. OncoImmunology 2014 3 9 e955441 10.4161/21624011.2014.955441 25941617
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096332050241022102545
Loading
/content/journals/ccdt/10.2174/0115680096332050241022102545
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: prognosis ; diagnosis ; CESC ; methylation ; CDK8 ; immune cell infiltration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test