Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis. Its dysregulation contributes to cancer development. Targeting tankyrase within this pathway holds the potential for inhibiting aberrant cell growth and promoting programmed cell death, offering a promising avenue for cancer treatment. ADP-ribosylation, a reversible process, modifies proteins post-synthesis, regulating diverse cellular signaling pathways. Transferase enzymes like mono and poly(ADP- ribosyl) transferases transfer ADP-ribose from NAD+ to specific amino acid side chains or ADP-ribose units on target proteins. Blocking tankyrase has emerged as a promising strategy in cancer treatment. This article reviews recent advancements in developing novel tankyrase inhibitors. It delves into structure-activity relationships, molecular docking, polypharmacology profiles, and binding mechanisms at the active site. Insights into lead structure development aid in designing potent anti-cancer medications, shedding light on promising avenues in cancer therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329753241015114119
2025-01-01
2026-02-20
Loading full text...

Full text loading...

References

  1. MehtaC.C. BhattH.G. Tankyrase inhibitors as antitumor agents: A patent update (2013 – 2020).Expert Opin. Ther. Pat.202131764566110.1080/13543776.2021.1888929 33567917
    [Google Scholar]
  2. VermaA. KumarA. ChughA. KumarS. KumarP. Tankyrase inhibitors: Emerging and promising therapeutics for cancer treatment.Med. Chem. Res.2021301507310.1007/s00044‑020‑02657‑7
    [Google Scholar]
  3. ChengH. LiX. WangC. ChenY. LiS. TanJ. TanB. HeY. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation.Cancer Lett.2019443809010.1016/j.canlet.2018.11.013 30472184
    [Google Scholar]
  4. GuoH.L. ZhangC. LiuQ. LiQ. LianG. WuD. LiX. ZhangW. ShenY. YeZ. LinS.Y. LinS.C. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation.Cell Res.20122281246125710.1038/cr.2012.52 22473005
    [Google Scholar]
  5. LiZ. YamauchiY. KamakuraM. MurayamaT. GoshimaF. KimuraH. NishiyamaY. Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1.J. Virol.201286149250310.1128/JVI.05897‑11 22013039
    [Google Scholar]
  6. RiffellJ.L. LordC.J. AshworthA. Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family.Nat. Rev. Drug Discov.2012111292393610.1038/nrd3868 23197039
    [Google Scholar]
  7. HsiaoS.J. SmithS. Tankyrase function at telomeres, spindle poles, and beyond.Biochimie2008901839210.1016/j.biochi.2007.07.012 17825467
    [Google Scholar]
  8. SmithS. GiriatI. SchmittA. de LangeT. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres.Science199828253931484148710.1126/science.282.5393.1484 9822378
    [Google Scholar]
  9. SeimiyaH. SmithS. The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182).J. Biol. Chem.200227716141161412610.1074/jbc.M112266200 11854288
    [Google Scholar]
  10. De RyckerM. PriceC.M. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains.Mol. Cell. Biol.200424229802981210.1128/MCB.24.22.9802‑9812.2004 15509784
    [Google Scholar]
  11. GuettlerS. LaRoseJ. PetsalakiE. GishG. ScotterA. PawsonT. RottapelR. SicheriF. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease.Cell201114761340135410.1016/j.cell.2011.10.046 22153077
    [Google Scholar]
  12. HuangS.M.A. MishinaY.M. LiuS. CheungA. StegmeierF. MichaudG.A. CharlatO. WielletteE. ZhangY. WiessnerS. HildM. ShiX. WilsonC.J. MickaninC. MyerV. FazalA. TomlinsonR. SerlucaF. ShaoW. ChengH. ShultzM. RauC. SchirleM. SchleglJ. GhidelliS. FawellS. LuC. CurtisD. KirschnerM.W. LengauerC. FinanP.M. TallaricoJ.A. BouwmeesterT. PorterJ.A. BauerA. CongF. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature2009461726461462010.1038/nature08356 19759537
    [Google Scholar]
  13. LiN. ZhangY. HanX. LiangK. WangJ. FengL. WangW. SongyangZ. LinC. YangL. YuY. ChenJ. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth.Genes Dev.201529215717010.1101/gad.251785.114 25547115
    [Google Scholar]
  14. TianX.H. HouW.J. FangY. FanJ. TongH. BaiS.L. ChenQ. XuH. LiY. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway.J. Exp. Clin. Cancer Res.201332110010.1186/1756‑9966‑32‑100 24308762
    [Google Scholar]
  15. SmithS. de LangeT. Tankyrase promotes telomere elongation in human cells.Curr. Biol.200010201299130210.1016/S0960‑9822(00)00752‑1 11069113
    [Google Scholar]
  16. ChangP. CoughlinM. MitchisonT.J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function.Nat. Cell Biol.20057111133113910.1038/ncb1322 16244666
    [Google Scholar]
  17. ChangW. DynekJ.N. SmithS. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis.Biochem. J.2005391217718410.1042/BJ20050885 16076287
    [Google Scholar]
  18. KimM.K. DudognonC. SmithS. Tankyrase 1 regulates centrosome function by controlling CPAP stability.EMBO Rep.201213872473210.1038/embor.2012.86 22699936
    [Google Scholar]
  19. KimM.K. SmithS. Persistent telomere cohesion triggers a prolonged anaphase.Mol. Biol. Cell2014251304010.1091/mbc.e13‑08‑0479 24173716
    [Google Scholar]
  20. YehT.Y.J. SbodioJ.I. ChiN.W. Mitotic phosphorylation of tankyrase, a PARP that promotes spindle assembly, by GSK3.Biochem. Biophys. Res. Commun.2006350357457910.1016/j.bbrc.2006.09.080 17026964
    [Google Scholar]
  21. LevaotN. VoytyukO. DimitriouI. SircoulombF. ChandrakumarA. DeckertM. KrzyzanowskiP.M. ScotterA. GuS. JanmohamedS. CongF. SimoncicP.D. UekiY. La RoseJ. RottapelR. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism.Cell201114761324133910.1016/j.cell.2011.10.045 22153076
    [Google Scholar]
  22. LauT. ChanE. CallowM. WaalerJ. BoggsJ. BlakeR.A. MagnusonS. SambroneA. SchuttenM. FiresteinR. MachonO. KorinekV. ChooE. DiazD. MerchantM. PolakisP. HolsworthD.D. KraussS. CostaM. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth.Cancer Res.201373103132314410.1158/0008‑5472.CAN‑12‑4562 23539443
    [Google Scholar]
  23. WaalerJ. MachonO. TumovaL. DinhH. KorinekV. WilsonS.R. PaulsenJ.E. PedersenN.M. EideT.J. MachonovaO. GradlD. VoronkovA. von KriesJ.P. KraussS. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice.Cancer Res.201272112822283210.1158/0008‑5472.CAN‑11‑3336 22440753
    [Google Scholar]
  24. WuX. LuoF. LiJ. ZhongX. LiuK. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway.Int. J. Oncol.20164841333134010.3892/ijo.2016.3360 26820603
    [Google Scholar]
  25. MashimaT. TanedaY. JangM.K. MizutaniA. MuramatsuY. YoshidaH. SatoA. TanakaN. SugimotoY. SeimiyaH. mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer.Oncotarget2017829479024791510.18632/oncotarget.18146 28615517
    [Google Scholar]
  26. SidawayJ.E. OrtonT.C. KalaitziK. JonesH.B. FosterA. LakeB.G. Analysis of β-catenin gene mutations and gene expression in liver tumours of C57BL/10J mice produced by chronic administration of sodium phenobarbital.Toxicology202043015234310.1016/j.tox.2019.152343 31836555
    [Google Scholar]
  27. VoronkovA. KraussS. Wnt/beta-catenin signaling and small molecule inhibitors.Curr. Pharm. Des.201319463466410.2174/138161213804581837 23016862
    [Google Scholar]
  28. StakheevD. TaborskaP. StrizovaZ. PodrazilM. BartunkovaJ. SmrzD. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro.Sci. Rep.201991476110.1038/s41598‑019‑41182‑5 30886380
    [Google Scholar]
  29. KimM. Novel insight into the function of tankyrase (Review).Oncol. Lett.20181666895690210.3892/ol.2018.9551 30546421
    [Google Scholar]
  30. NguyenV.H.L. HoughR. BernaudoS. PengC. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis.J. Ovarian Res.201912112210.1186/s13048‑019‑0596‑z 31829231
    [Google Scholar]
  31. TaciakB. PruszynskaI. KiragaL. BialasekM. KrólM. Wnt signaling pathway in development and cancer.J. Physiol. Pharmacol.2018692185196 29980141
    [Google Scholar]
  32. JarmanE.J. BoulterL. Targeting the Wnt signaling pathway: The challenge of reducing scarring without affecting repair.Expert Opin. Investig. Drugs202029217919010.1080/13543784.2020.1718105 31948298
    [Google Scholar]
  33. VelhoP.I. FuW. WangH. MirkheshtiN. QaziF. LimaF.A. Eur. Urol.2020771142110.1016/j.eururo.2019.05.032 31176623
    [Google Scholar]
  34. HarveyK.F. ZhangX. ThomasD.M. The Hippo pathway and human cancer.Nat. Rev. Cancer201313424625710.1038/nrc3458 23467301
    [Google Scholar]
  35. ZhaoB. LiL. LeiQ. GuanK.L. The Hippo–YAP pathway in organ size control and tumorigenesis: An updated version.Genes Dev.201024986287410.1101/gad.1909210 20439427
    [Google Scholar]
  36. HalderG. JohnsonR.L. Hippo signaling: Growth control and beyond.Development2011138192210.1242/dev.045500 21138973
    [Google Scholar]
  37. ArquésO. ChicoteI. PuigI. TenbaumS.P. ArgilésG. DienstmannR. FernándezN. CaratùG. MatitoJ. SilberschmidtD. RodonJ. LandolfiS. PratA. EspínE. CharcoR. NuciforoP. VivancosA. ShaoW. TaberneroJ. PalmerH.G. Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer.Clin. Cancer Res.201622364465610.1158/1078‑0432.CCR‑14‑3081 26224873
    [Google Scholar]
  38. MoJ.S. ParkH.W. GuanK.L. The Hippo signaling pathway in stem cell biology and cancer.EMBO Rep.201415664265610.15252/embr.201438638 24825474
    [Google Scholar]
  39. JangM.K. MashimaT. SeimiyaH. Tankyrase inhibitors target colorectal cancer stem cells via axin-dependent downregulation of c-kit tyrosine kinase.Mol. Cancer Ther.202019376577610.1158/1535‑7163.MCT‑19‑0668 31907221
    [Google Scholar]
  40. StortiC.B. de OliveiraR.A. de CarvalhoM. HasimotoE.N. CataneoD.C. CataneoA.J.M. De FaveriJ. VasconcelosE.J.R. dos ReisP.P. CanoM.I.N. Telomere-associated genes and telomeric lncRNAs are biomarker candidates in lung squamous cell carcinoma (LUSC).Exp. Mol. Pathol.202011210435410.1016/j.yexmp.2019.104354 31837325
    [Google Scholar]
  41. ZhaoS. WangF. LiuL. Alternative lengthening of telomeres (ALT) in tumors and pluripotent stem cells.Genes (Basel)20191012103010.3390/genes10121030 31835618
    [Google Scholar]
  42. BoltzK.A. JastiM. TownleyJ.M. ShippenD.E. Analysis of poly(ADP-Ribose) polymerases in Arabidopsis telomere biology.PLoS One201492e8887210.1371/journal.pone.0088872 24551184
    [Google Scholar]
  43. PatelB. PatelA. PatelA. BhattH. CoMFA, CoMSIA, molecular docking and MOLCAD studies of pyrimidinone derivatives to design novel and selective tankyrase inhibitors.J. Mol. Struct.2020122112878310.1016/j.molstruc.2020.128783
    [Google Scholar]
  44. YangL. SunL. TengY. ChenH. GaoY. LevineA.S. NakajimaS. LanL. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage.Nucleic Acids Res.20174573906392110.1093/nar/gkx083 28160604
    [Google Scholar]
  45. FranchetC. HoffmannJ.S. When RAD52 allows mitosis to accept unscheduled DNA synthesis.Cancers (Basel)20191212610.3390/cancers12010026 31861741
    [Google Scholar]
  46. DaniloskiZ. BishtK.K. McStayB. SmithS. Resolution of human ribosomal DNA occurs in anaphase, dependent on tankyrase 1, condensin II, and topoisomerase IIα.Genes Dev.2019335-627628110.1101/gad.321836.118 30804226
    [Google Scholar]
  47. LehtiöL. ChiN.W. KraussS. Tankyrases as drug targets.FEBS J.2013280153576359310.1111/febs.12320 23648170
    [Google Scholar]
  48. SuZ. DeshpandeV. JamesD.E. StöckliJ. Tankyrase modulates insulin sensitivity in skeletal muscle cells by regulating the stability of GLUT4 vesicle proteins.J. Biol. Chem.2018293228578858710.1074/jbc.RA117.001058 29669812
    [Google Scholar]
  49. TanakaN. MashimaT. MizutaniA. SatoA. AoyamaA. GongB. YoshidaH. MuramatsuY. NakataK. MatsuuraM. KatayamaR. NagayamaS. FujitaN. SugimotoY. SeimiyaH. APC Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer.Mol. Cancer Ther.201716475276210.1158/1535‑7163.MCT‑16‑0578 28179481
    [Google Scholar]
  50. SolbergN.T. WaalerJ. LundK. MyglandL. OlsenP.A. KraussS. TANKYRASE inhibition enhances the antiproliferative effect of PI3K and EGFR inhibition, mutually affecting β-CATENIN and AKT signaling in colorectal cancer.Mol. Cancer Res.201816354355310.1158/1541‑7786.MCR‑17‑0362 29222171
    [Google Scholar]
  51. SchatoffE.M. GoswamiS. ZafraM.P. ForondaM. ShustermanM. LeachB.I. KattiA. DiazB.J. DowL.E. Distinct Colorectal Cancer–Associated APC Mutations Dictate Response to Tankyrase Inhibition.Cancer Discov.20199101358137110.1158/2159‑8290.CD‑19‑0289 31337618
    [Google Scholar]
  52. DowL.E. O’RourkeK.P. SimonJ. TschaharganehD.F. van EsJ.H. CleversH. LoweS.W. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer.Cell201516171539155210.1016/j.cell.2015.05.033 26091037
    [Google Scholar]
  53. MizutaniA. YashirodaY. MuramatsuY. YoshidaH. ChikadaT. TsumuraT. OkueM. ShiraiF. FukamiT. YoshidaM. SeimiyaH.RK ‐287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model.Cancer Sci.2018109124003401410.1111/cas.13805 30238564
    [Google Scholar]
  54. ThorvaldsenT.E. PedersenN.M. WenzelE.M. StenmarkH. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitor-induced formation of degradasomes and β-catenin degradation.PLoS One2017121e017050810.1371/journal.pone.0170508 28107521
    [Google Scholar]
  55. BadderL.M. HollinsA.J. HerpersB. YanK. EwanK.B. ThomasM. ShoneJ.R. BadderD.A. NavenM. AshelfordK.E. HargestR. ClarkeA.R. EsdarC. BuchstallerH.P. TreherneJ.M. BojS. RamezanpourB. WienkeD. PriceL.S. ShawP.H. DaleT.C. 3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors.PLoS One2020158e023531910.1371/journal.pone.0235319 32810173
    [Google Scholar]
  56. MenonM. ElliottR. BowersL. BalanN. RafiqR. Costa-CabralS. MunkongeF. TrinidadeI. PorterR. CampbellA.D. JohnsonE.R. EsdarC. BuchstallerH.P. LeuthnerB. RohdichF. SchneiderR. SansomO. WienkeD. AshworthA. LordC.J. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors.Sci. Rep.20199120110.1038/s41598‑018‑36447‑4 30655555
    [Google Scholar]
  57. Casás-SelvesM. KimJ. ZhangZ. HelfrichB.A. GaoD. PorterC.C. ScarboroughH.A. BunnP.A.Jr ChanD.C. TanA.C. DeGregoriJ. Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition.Cancer Res.201272164154416410.1158/0008‑5472.CAN‑11‑2848 22738915
    [Google Scholar]
  58. ScarboroughH.A. HelfrichB.A. Casás-SelvesM. SchullerA.G. GrosskurthS.E. KimJ. TanA.C. ChanD.C. ZhangZ. ZaberezhnyyV. BunnP.A. DeGregoriJ. 1366: An inhibitor of tankyrase and the canonical Wnt pathway that limits the persistence of non–small cell lung cancer cells following EGFR inhibition.Clin. Cancer Res.20172361531154110.1158/1078‑0432.CCR‑16‑1179 27663586
    [Google Scholar]
  59. Kierulf-VieiraK.S. SandbergC.J. WaalerJ. LundK. SkagaE. SaberniakB.M. PanagopoulosI. BrandalP. KraussS. LangmoenI.A. Vik-MoE.O. A small-molecule tankyrase inhibitor reduces glioma stem cell proliferation and sphere formation.Cancers (Basel)2020126163010.3390/cancers12061630 32575464
    [Google Scholar]
  60. Martins-NevesS.R. Paiva-OliveiraD.I. Fontes-RibeiroC. BovéeJ.V.M.G. Cleton-JansenA.M. GomesC.M.F. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft.Cancer Lett.201841411510.1016/j.canlet.2017.11.004 29126913
    [Google Scholar]
  61. BaoR. ChristovaT. SongS. AngersS. YanX. AttisanoL. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.PLoS One2012711e4867010.1371/journal.pone.0048670 23144924
    [Google Scholar]
  62. HaG.H. KimD.Y. BreuerE.K. KimC.K. Combination treatment of polo-like kinase 1 and tankyrase-1 inhibitors enhances anticancer effect in triple-negative breast cancer cells.Anticancer Res.201838313031310 29491053
    [Google Scholar]
  63. GelminiS. PoggesiM. DistanteV. BianchiS. SimiL. LuconiM. Casini RaggiC. CataliottiL. PazzagliM. OrlandoC. Tankyrase, a positive regulator of telomere elongation, is over expressed in human breast cancer.Cancer Lett.20042161818710.1016/j.canlet.2004.05.010 15500951
    [Google Scholar]
  64. LiJ. YenC. LiawD. PodsypaninaK. BoseS. WangS.I. PucJ. MiliaresisC. RodgersL. McCombieR. BignerS.H. GiovanellaB.C. IttmannM. TyckoB. HibshooshH. WiglerM.H. ParsonsR. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.Science199727553081943194710.1126/science.275.5308.1943 9072974
    [Google Scholar]
  65. ZimmerlinL. ParkT.S. HuoJ.S. VermaK. PatherS.R. TalbotC.C.Jr AgarwalJ. SteppanD. ZhangY.W. ConsidineM. GuoH. ZhongX. GutierrezC. CopeL. Canto-SolerM.V. FriedmanA.D. BaylinS.B. ZambidisE.T. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality.Development2016143234368438010.1242/dev.138982 27660325
    [Google Scholar]
  66. TakeuchiO. Wnt Signal Pathway Regulates MMP-1 and MMP-3 Production in Human Dental Pulp Fibroblast like Cells.Journal of Oral Tissue Engineering20181624756
    [Google Scholar]
  67. PundkarC. AntonyF. KangX. MishraA. BabuR.J. ChenP. LiF. SuryawanshiA. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity.Heliyon202396e1668810.1016/j.heliyon.2023.e16688 37313143
    [Google Scholar]
  68. GrzywaczB. KatariaN. KatariaN. BlazarB.R. MillerJ.S. VernerisM.R. Natural killer–cell differentiation by myeloid progenitors.Blood2011117133548355810.1182/blood‑2010‑04‑281394 21173117
    [Google Scholar]
  69. ColucciF. CaligiuriM.A. Di SantoJ.P. What does it take to make a natural killer?Nat. Rev. Immunol.20033541342510.1038/nri1088 12766763
    [Google Scholar]
  70. HaseebM. PirzadaR.H. AinQ.U. ChoiS. Wnt signaling in the regulation of immune cell and cancer therapeutics.Cells2019811138010.3390/cells8111380 31684152
    [Google Scholar]
  71. RadyukS.N. OrrW.C. The multifaceted impact of peroxiredoxins on aging and disease.Antioxid. Redox Signal.201829131293131110.1089/ars.2017.7452 29212351
    [Google Scholar]
  72. YehT.Y.J. SbodioJ.I. NguyenM.T.A. MeyerT.N. LeeR.M. ChiN.W. Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1.Mol. Cell. Biochem.20052761-218319210.1007/s11010‑005‑4059‑z 16132700
    [Google Scholar]
  73. Lafon-HughesL. Fernández VillamilS.H. Vilchez LarreaS.C. Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways.Parasitology2021148131680169010.1017/S0031182021001402 35060470
    [Google Scholar]
  74. SteckP.A. PershouseM.A. JasserS.A. YungW.K.A. LinH. LigonA.H. LangfordL.A. BaumgardM.L. HattierT. DavisT. FryeC. HuR. SwedlundB. TengD.H.R. TavtigianS.V. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.Nat. Genet.199715435636210.1038/ng0497‑356 9090379
    [Google Scholar]
  75. LiawD. MarshD.J. LiJ. DahiaP.L.M. WangS.I. ZhengZ. BoseS. CallK.M. TsouH.C. PeacokeM. EngC. ParsonsR. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome.Nat. Genet.1997161646710.1038/ng0597‑64 9140396
    [Google Scholar]
  76. GoodwinJ.F. KnudsenK.E. Beyond DNA repair: DNA-PK function in cancer.Cancer Discov.20144101126113910.1158/2159‑8290.CD‑14‑0358 25168287
    [Google Scholar]
  77. GagnéJ.P. IsabelleM. LoK.S. BourassaS. HendzelM.J. DawsonV.L. DawsonT.M. PoirierG.G. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.Nucleic Acids Res.200836226959697610.1093/nar/gkn771 18981049
    [Google Scholar]
  78. RuscettiT. LehnertB.E. HalbrookJ. Le TrongH. HoekstraM.F. ChenD.J. PetersonS.R. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase.J. Biol. Chem.199827323144611446710.1074/jbc.273.23.14461 9603959
    [Google Scholar]
  79. DregallaR.C. ZhouJ. IdateR.R. BattagliaC.L.R. LiberH.L. BaileyS.M. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: Suppression of T-SCE and stabilization of DNA-PKcs.Aging (Albany NY)201021069170810.18632/aging.100210 21037379
    [Google Scholar]
  80. NagyZ. KalousiA. FurstA. KochM. FischerB. SoutoglouE. Tankyrases promote homologous recombination and check point activation in response to DSBs.PLoS Genet.2016122e100579110.1371/journal.pgen.1005791 26845027
    [Google Scholar]
  81. McGonigleS. ChenZ. WuJ. ChangP. Kolber-SimondsD. AckermannK. TwineN.C. ShieJ.L. MiuJ.T. HuangK.C. MonizG.A. NomotoK. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling.Oncotarget2015638413074132310.18632/oncotarget.5846 26513298
    [Google Scholar]
  82. PlummerR. DuaD. CrestiN. DrewY. StephensP. FoeghM. KnudsenS. SachdevP. MistryB.M. DixitV. McGonigleS. HallN. MatijevicM. McGrathS. SarkerD. First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor.Br. J. Cancer2020123452553310.1038/s41416‑020‑0916‑5 32523090
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329753241015114119
Loading
/content/journals/ccdt/10.2174/0115680096329753241015114119
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ADP-ribosylation; Cancer; PARP; tankyrase; tankyrase inhibitors; Wnt/β-catenin signaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test