Skip to content
2000
image of Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer

Abstract

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis. Its dysregulation contributes to cancer development. Targeting tankyrase within this pathway holds the potential for inhibiting aberrant cell growth and promoting programmed cell death, offering a promising avenue for cancer treatment. ADP-ribosylation, a reversible process, modifies proteins post-synthesis, regulating diverse cellular signaling pathways. Transferase enzymes like mono and poly(ADP- ribosyl) transferases transfer ADP-ribose from NAD+ to specific amino acid side chains or ADP-ribose units on target proteins. Blocking tankyrase has emerged as a promising strategy in cancer treatment. This article reviews recent advancements in developing novel tankyrase inhibitors. It delves into structure-activity relationships, molecular docking, polypharmacology profiles, and binding mechanisms at the active site. Insights into lead structure development aid in designing potent anti-cancer medications, shedding light on promising avenues in cancer therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329753241015114119
2025-01-01
2025-01-18
Loading full text...

Full text loading...

References

  1. Mehta C.C. Bhatt H.G. Tankyrase inhibitors as antitumor agents: A patent update (2013 – 2020). Expert Opin. Ther. Pat. 2021 31 7 645 661 10.1080/13543776.2021.1888929 33567917
    [Google Scholar]
  2. Verma A. Kumar A. Chugh A. Kumar S. Kumar P. Tankyrase inhibitors: Emerging and promising therapeutics for cancer treatment. Med. Chem. Res. 2021 30 1 50 73 10.1007/s00044‑020‑02657‑7
    [Google Scholar]
  3. Cheng H. Li X. Wang C. Chen Y. Li S. Tan J. Tan B. He Y. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett. 2019 443 80 90 10.1016/j.canlet.2018.11.013 30472184
    [Google Scholar]
  4. Guo H.L. Zhang C. Liu Q. Li Q. Lian G. Wu D. Li X. Zhang W. Shen Y. Ye Z. Lin S.Y. Lin S.C. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res. 2012 22 8 1246 1257 10.1038/cr.2012.52 22473005
    [Google Scholar]
  5. Li Z. Yamauchi Y. Kamakura M. Murayama T. Goshima F. Kimura H. Nishiyama Y. Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J. Virol. 2012 86 1 492 503 10.1128/JVI.05897‑11 22013039
    [Google Scholar]
  6. Riffell J.L. Lord C.J. Ashworth A. Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 2012 11 12 923 936 10.1038/nrd3868 23197039
    [Google Scholar]
  7. Hsiao S.J. Smith S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 2008 90 1 83 92 10.1016/j.biochi.2007.07.012 17825467
    [Google Scholar]
  8. Smith S. Giriat I. Schmitt A. de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998 282 5393 1484 1487 10.1126/science.282.5393.1484 9822378
    [Google Scholar]
  9. Seimiya H. Smith S. The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182). J. Biol. Chem. 2002 277 16 14116 14126 10.1074/jbc.M112266200 11854288
    [Google Scholar]
  10. De Rycker M. Price C.M. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol. Cell. Biol. 2004 24 22 9802 9812 10.1128/MCB.24.22.9802‑9812.2004 15509784
    [Google Scholar]
  11. Guettler S. LaRose J. Petsalaki E. Gish G. Scotter A. Pawson T. Rottapel R. Sicheri F. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell 2011 147 6 1340 1354 10.1016/j.cell.2011.10.046 22153077
    [Google Scholar]
  12. Huang S.M.A. Mishina Y.M. Liu S. Cheung A. Stegmeier F. Michaud G.A. Charlat O. Wiellette E. Zhang Y. Wiessner S. Hild M. Shi X. Wilson C.J. Mickanin C. Myer V. Fazal A. Tomlinson R. Serluca F. Shao W. Cheng H. Shultz M. Rau C. Schirle M. Schlegl J. Ghidelli S. Fawell S. Lu C. Curtis D. Kirschner M.W. Lengauer C. Finan P.M. Tallarico J.A. Bouwmeester T. Porter J.A. Bauer A. Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009 461 7264 614 620 10.1038/nature08356 19759537
    [Google Scholar]
  13. Li N. Zhang Y. Han X. Liang K. Wang J. Feng L. Wang W. Songyang Z. Lin C. Yang L. Yu Y. Chen J. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes Dev. 2015 29 2 157 170 10.1101/gad.251785.114 25547115
    [Google Scholar]
  14. Tian X.H. Hou W.J. Fang Y. Fan J. Tong H. Bai S.L. Chen Q. Xu H. Li Y. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2013 32 1 100 10.1186/1756‑9966‑32‑100 24308762
    [Google Scholar]
  15. Smith S. de Lange T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 2000 10 20 1299 1302 10.1016/S0960‑9822(00)00752‑1 11069113
    [Google Scholar]
  16. Chang P. Coughlin M. Mitchison T.J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat. Cell Biol. 2005 7 11 1133 1139 10.1038/ncb1322 16244666
    [Google Scholar]
  17. Chang W. Dynek J.N. Smith S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J. 2005 391 2 177 184 10.1042/BJ20050885 16076287
    [Google Scholar]
  18. Kim M.K. Dudognon C. Smith S. Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep. 2012 13 8 724 732 10.1038/embor.2012.86 22699936
    [Google Scholar]
  19. Kim M.K. Smith S. Persistent telomere cohesion triggers a prolonged anaphase. Mol. Biol. Cell 2014 25 1 30 40 10.1091/mbc.e13‑08‑0479 24173716
    [Google Scholar]
  20. Yeh T.Y.J. Sbodio J.I. Chi N.W. Mitotic phosphorylation of tankyrase, a PARP that promotes spindle assembly, by GSK3. Biochem. Biophys. Res. Commun. 2006 350 3 574 579 10.1016/j.bbrc.2006.09.080 17026964
    [Google Scholar]
  21. Levaot N. Voytyuk O. Dimitriou I. Sircoulomb F. Chandrakumar A. Deckert M. Krzyzanowski P.M. Scotter A. Gu S. Janmohamed S. Cong F. Simoncic P.D. Ueki Y. La Rose J. Rottapel R. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 2011 147 6 1324 1339 10.1016/j.cell.2011.10.045 22153076
    [Google Scholar]
  22. Lau T. Chan E. Callow M. Waaler J. Boggs J. Blake R.A. Magnuson S. Sambrone A. Schutten M. Firestein R. Machon O. Korinek V. Choo E. Diaz D. Merchant M. Polakis P. Holsworth D.D. Krauss S. Costa M. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013 73 10 3132 3144 10.1158/0008‑5472.CAN‑12‑4562 23539443
    [Google Scholar]
  23. Waaler J. Machon O. Tumova L. Dinh H. Korinek V. Wilson S.R. Paulsen J.E. Pedersen N.M. Eide T.J. Machonova O. Gradl D. Voronkov A. von Kries J.P. Krauss S. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 2012 72 11 2822 2832 10.1158/0008‑5472.CAN‑11‑3336 22440753
    [Google Scholar]
  24. Wu X. Luo F. Li J. Zhong X. Liu K. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int. J. Oncol. 2016 48 4 1333 1340 10.3892/ijo.2016.3360 26820603
    [Google Scholar]
  25. Mashima T. Taneda Y. Jang M.K. Mizutani A. Muramatsu Y. Yoshida H. Sato A. Tanaka N. Sugimoto Y. Seimiya H. mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer. Oncotarget 2017 8 29 47902 47915 10.18632/oncotarget.18146 28615517
    [Google Scholar]
  26. Sidaway J.E. Orton T.C. Kalaitzi K. Jones H.B. Foster A. Lake B.G. Analysis of β-catenin gene mutations and gene expression in liver tumours of C57BL/10J mice produced by chronic administration of sodium phenobarbital. Toxicology 2020 430 152343 10.1016/j.tox.2019.152343 31836555
    [Google Scholar]
  27. Voronkov A. Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr. Pharm. Des. 2013 19 4 634 664 10.2174/138161213804581837 23016862
    [Google Scholar]
  28. Stakheev D. Taborska P. Strizova Z. Podrazil M. Bartunkova J. Smrz D. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 2019 9 1 4761 10.1038/s41598‑019‑41182‑5 30886380
    [Google Scholar]
  29. Kim M. Novel insight into the function of tankyrase (Review). Oncol. Lett. 2018 16 6 6895 6902 10.3892/ol.2018.9551 30546421
    [Google Scholar]
  30. Nguyen V.H.L. Hough R. Bernaudo S. Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J. Ovarian Res. 2019 12 1 122 10.1186/s13048‑019‑0596‑z 31829231
    [Google Scholar]
  31. Taciak B. Pruszynska I. Kiraga L. Bialasek M. Król M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. 2018 69 2 185 196 29980141
    [Google Scholar]
  32. Jarman E.J. Boulter L. Targeting the Wnt signaling pathway: The challenge of reducing scarring without affecting repair. Expert Opin. Investig. Drugs 2020 29 2 179 190 10.1080/13543784.2020.1718105 31948298
    [Google Scholar]
  33. Velho P. I. Fu W. Wang H. Mirkheshti N. Qazi F. Lima F. A. Eur. Urol. 2020 77 1 14 21 10.1016/j.eururo.2019.05.032 31176623
    [Google Scholar]
  34. Harvey K.F. Zhang X. Thomas D.M. The Hippo pathway and human cancer. Nat. Rev. Cancer 2013 13 4 246 257 10.1038/nrc3458 23467301
    [Google Scholar]
  35. Zhao B. Li L. Lei Q. Guan K.L. The Hippo–YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 2010 24 9 862 874 10.1101/gad.1909210 20439427
    [Google Scholar]
  36. Halder G. Johnson R.L. Hippo signaling: Growth control and beyond. Development 2011 138 1 9 22 10.1242/dev.045500 21138973
    [Google Scholar]
  37. Arqués O. Chicote I. Puig I. Tenbaum S.P. Argilés G. Dienstmann R. Fernández N. Caratù G. Matito J. Silberschmidt D. Rodon J. Landolfi S. Prat A. Espín E. Charco R. Nuciforo P. Vivancos A. Shao W. Tabernero J. Palmer H.G. Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer. Clin. Cancer Res. 2016 22 3 644 656 10.1158/1078‑0432.CCR‑14‑3081 26224873
    [Google Scholar]
  38. Mo J.S. Park H.W. Guan K.L. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014 15 6 642 656 10.15252/embr.201438638 24825474
    [Google Scholar]
  39. Jang M.K. Mashima T. Seimiya H. Tankyrase inhibitors target colorectal cancer stem cells via axin-dependent downregulation of c-kit tyrosine kinase. Mol. Cancer Ther. 2020 19 3 765 776 10.1158/1535‑7163.MCT‑19‑0668 31907221
    [Google Scholar]
  40. Storti C.B. de Oliveira R.A. de Carvalho M. Hasimoto E.N. Cataneo D.C. Cataneo A.J.M. De Faveri J. Vasconcelos E.J.R. dos Reis P.P. Cano M.I.N. Telomere-associated genes and telomeric lncRNAs are biomarker candidates in lung squamous cell carcinoma (LUSC). Exp. Mol. Pathol. 2020 112 104354 10.1016/j.yexmp.2019.104354 31837325
    [Google Scholar]
  41. Zhao S. Wang F. Liu L. Alternative lengthening of telomeres (ALT) in tumors and pluripotent stem cells. Genes (Basel) 2019 10 12 1030 10.3390/genes10121030 31835618
    [Google Scholar]
  42. Boltz K.A. Jasti M. Townley J.M. Shippen D.E. Analysis of poly(ADP-Ribose) polymerases in Arabidopsis telomere biology. PLoS One 2014 9 2 e88872 10.1371/journal.pone.0088872 24551184
    [Google Scholar]
  43. Patel B. Patel A. Patel A. Bhatt H. CoMFA, CoMSIA, molecular docking and MOLCAD studies of pyrimidinone derivatives to design novel and selective tankyrase inhibitors. J. Mol. Struct. 2020 1221 128783 10.1016/j.molstruc.2020.128783
    [Google Scholar]
  44. Yang L. Sun L. Teng Y. Chen H. Gao Y. Levine A.S. Nakajima S. Lan L. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage. Nucleic Acids Res. 2017 45 7 3906 3921 10.1093/nar/gkx083 28160604
    [Google Scholar]
  45. Franchet C. Hoffmann J.S. When RAD52 allows mitosis to accept unscheduled DNA synthesis. Cancers (Basel) 2019 12 1 26 10.3390/cancers12010026 31861741
    [Google Scholar]
  46. Daniloski Z. Bisht K.K. McStay B. Smith S. Resolution of human ribosomal DNA occurs in anaphase, dependent on tankyrase 1, condensin II, and topoisomerase IIα. Genes Dev. 2019 33 5-6 276 281 10.1101/gad.321836.118 30804226
    [Google Scholar]
  47. Lehtiö L. Chi N.W. Krauss S. Tankyrases as drug targets. FEBS J. 2013 280 15 3576 3593 10.1111/febs.12320 23648170
    [Google Scholar]
  48. Su Z. Deshpande V. James D.E. Stöckli J. Tankyrase modulates insulin sensitivity in skeletal muscle cells by regulating the stability of GLUT4 vesicle proteins. J. Biol. Chem. 2018 293 22 8578 8587 10.1074/jbc.RA117.001058 29669812
    [Google Scholar]
  49. Tanaka N. Mashima T. Mizutani A. Sato A. Aoyama A. Gong B. Yoshida H. Muramatsu Y. Nakata K. Matsuura M. Katayama R. Nagayama S. Fujita N. Sugimoto Y. Seimiya H. APC Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer. Mol. Cancer Ther. 2017 16 4 752 762 10.1158/1535‑7163.MCT‑16‑0578 28179481
    [Google Scholar]
  50. Solberg N.T. Waaler J. Lund K. Mygland L. Olsen P.A. Krauss S. TANKYRASE inhibition enhances the antiproliferative effect of PI3K and EGFR inhibition, mutually affecting β-CATENIN and AKT signaling in colorectal cancer. Mol. Cancer Res. 2018 16 3 543 553 10.1158/1541‑7786.MCR‑17‑0362 29222171
    [Google Scholar]
  51. Schatoff E.M. Goswami S. Zafra M.P. Foronda M. Shusterman M. Leach B.I. Katti A. Diaz B.J. Dow L.E. Distinct Colorectal Cancer–Associated APC Mutations Dictate Response to Tankyrase Inhibition. Cancer Discov. 2019 9 10 1358 1371 10.1158/2159‑8290.CD‑19‑0289 31337618
    [Google Scholar]
  52. Dow L.E. O’Rourke K.P. Simon J. Tschaharganeh D.F. van Es J.H. Clevers H. Lowe S.W. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 2015 161 7 1539 1552 10.1016/j.cell.2015.05.033 26091037
    [Google Scholar]
  53. Mizutani A. Yashiroda Y. Muramatsu Y. Yoshida H. Chikada T. Tsumura T. Okue M. Shirai F. Fukami T. Yoshida M. Seimiya H. RK ‐287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Cancer Sci. 2018 109 12 4003 4014 10.1111/cas.13805 30238564
    [Google Scholar]
  54. Thorvaldsen T.E. Pedersen N.M. Wenzel E.M. Stenmark H. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitor-induced formation of degradasomes and β-catenin degradation. PLoS One 2017 12 1 e0170508 10.1371/journal.pone.0170508 28107521
    [Google Scholar]
  55. Badder L.M. Hollins A.J. Herpers B. Yan K. Ewan K.B. Thomas M. Shone J.R. Badder D.A. Naven M. Ashelford K.E. Hargest R. Clarke A.R. Esdar C. Buchstaller H.P. Treherne J.M. Boj S. Ramezanpour B. Wienke D. Price L.S. Shaw P.H. Dale T.C. 3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors. PLoS One 2020 15 8 e0235319 10.1371/journal.pone.0235319 32810173
    [Google Scholar]
  56. Menon M. Elliott R. Bowers L. Balan N. Rafiq R. Costa-Cabral S. Munkonge F. Trinidade I. Porter R. Campbell A.D. Johnson E.R. Esdar C. Buchstaller H.P. Leuthner B. Rohdich F. Schneider R. Sansom O. Wienke D. Ashworth A. Lord C.J. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep. 2019 9 1 201 10.1038/s41598‑018‑36447‑4 30655555
    [Google Scholar]
  57. Casás-Selves M. Kim J. Zhang Z. Helfrich B.A. Gao D. Porter C.C. Scarborough H.A. Bunn P.A. Jr Chan D.C. Tan A.C. DeGregori J. Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res. 2012 72 16 4154 4164 10.1158/0008‑5472.CAN‑11‑2848 22738915
    [Google Scholar]
  58. Scarborough H.A. Helfrich B.A. Casás-Selves M. Schuller A.G. Grosskurth S.E. Kim J. Tan A.C. Chan D.C. Zhang Z. Zaberezhnyy V. Bunn P.A. DeGregori J. 1366: An inhibitor of tankyrase and the canonical Wnt pathway that limits the persistence of non–small cell lung cancer cells following EGFR inhibition. Clin. Cancer Res. 2017 23 6 1531 1541 10.1158/1078‑0432.CCR‑16‑1179 27663586
    [Google Scholar]
  59. Kierulf-Vieira K.S. Sandberg C.J. Waaler J. Lund K. Skaga E. Saberniak B.M. Panagopoulos I. Brandal P. Krauss S. Langmoen I.A. Vik-Mo E.O. A small-molecule tankyrase inhibitor reduces glioma stem cell proliferation and sphere formation. Cancers (Basel) 2020 12 6 1630 10.3390/cancers12061630 32575464
    [Google Scholar]
  60. Martins-Neves S.R. Paiva-Oliveira D.I. Fontes-Ribeiro C. Bovée J.V.M.G. Cleton-Jansen A.M. Gomes C.M.F. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Lett. 2018 414 1 15 10.1016/j.canlet.2017.11.004 29126913
    [Google Scholar]
  61. Bao R. Christova T. Song S. Angers S. Yan X. Attisano L. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS One 2012 7 11 e48670 10.1371/journal.pone.0048670 23144924
    [Google Scholar]
  62. Ha G.H. Kim D.Y. Breuer E.K. Kim C.K. Combination treatment of polo-like kinase 1 and tankyrase-1 inhibitors enhances anticancer effect in triple-negative breast cancer cells. Anticancer Res. 2018 38 3 1303 1310 29491053
    [Google Scholar]
  63. Gelmini S. Poggesi M. Distante V. Bianchi S. Simi L. Luconi M. Casini Raggi C. Cataliotti L. Pazzagli M. Orlando C. Tankyrase, a positive regulator of telomere elongation, is over expressed in human breast cancer. Cancer Lett. 2004 216 1 81 87 10.1016/j.canlet.2004.05.010 15500951
    [Google Scholar]
  64. Li J. Yen C. Liaw D. Podsypanina K. Bose S. Wang S.I. Puc J. Miliaresis C. Rodgers L. McCombie R. Bigner S.H. Giovanella B.C. Ittmann M. Tycko B. Hibshoosh H. Wigler M.H. Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997 275 5308 1943 1947 10.1126/science.275.5308.1943 9072974
    [Google Scholar]
  65. Zimmerlin L. Park T.S. Huo J.S. Verma K. Pather S.R. Talbot C.C. Jr Agarwal J. Steppan D. Zhang Y.W. Considine M. Guo H. Zhong X. Gutierrez C. Cope L. Canto-Soler M.V. Friedman A.D. Baylin S.B. Zambidis E.T. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development 2016 143 23 4368 4380 10.1242/dev.138982 27660325
    [Google Scholar]
  66. Takeuchi O. Wnt Signal Pathway Regulates MMP-1 and MMP-3 Production in Human Dental Pulp Fibroblast like Cells. Journal of Oral Tissue Engineering 2018 16 2 47 56
    [Google Scholar]
  67. Pundkar C. Antony F. Kang X. Mishra A. Babu R.J. Chen P. Li F. Suryawanshi A. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity. Heliyon 2023 9 6 e16688 10.1016/j.heliyon.2023.e16688 37313143
    [Google Scholar]
  68. Grzywacz B. Kataria N. Kataria N. Blazar B.R. Miller J.S. Verneris M.R. Natural killer–cell differentiation by myeloid progenitors. Blood 2011 117 13 3548 3558 10.1182/blood‑2010‑04‑281394 21173117
    [Google Scholar]
  69. Colucci F. Caligiuri M.A. Di Santo J.P. What does it take to make a natural killer? Nat. Rev. Immunol. 2003 3 5 413 425 10.1038/nri1088 12766763
    [Google Scholar]
  70. Haseeb M. Pirzada R.H. Ain Q.U. Choi S. Wnt signaling in the regulation of immune cell and cancer therapeutics. Cells 2019 8 11 1380 10.3390/cells8111380 31684152
    [Google Scholar]
  71. Radyuk S.N. Orr W.C. The multifaceted impact of peroxiredoxins on aging and disease. Antioxid. Redox Signal. 2018 29 13 1293 1311 10.1089/ars.2017.7452 29212351
    [Google Scholar]
  72. Yeh T.Y.J. Sbodio J.I. Nguyen M.T.A. Meyer T.N. Lee R.M. Chi N.W. Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1. Mol. Cell. Biochem. 2005 276 1-2 183 192 10.1007/s11010‑005‑4059‑z 16132700
    [Google Scholar]
  73. Lafon-Hughes L. Fernández Villamil S.H. Vilchez Larrea S.C. Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways. Parasitology 2021 148 13 1680 1690 10.1017/S0031182021001402 35060470
    [Google Scholar]
  74. Steck P.A. Pershouse M.A. Jasser S.A. Yung W.K.A. Lin H. Ligon A.H. Langford L.A. Baumgard M.L. Hattier T. Davis T. Frye C. Hu R. Swedlund B. Teng D.H.R. Tavtigian S.V. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 1997 15 4 356 362 10.1038/ng0497‑356 9090379
    [Google Scholar]
  75. Liaw D. Marsh D.J. Li J. Dahia P.L.M. Wang S.I. Zheng Z. Bose S. Call K.M. Tsou H.C. Peacoke M. Eng C. Parsons R. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 1997 16 1 64 67 10.1038/ng0597‑64 9140396
    [Google Scholar]
  76. Goodwin J.F. Knudsen K.E. Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 2014 4 10 1126 1139 10.1158/2159‑8290.CD‑14‑0358 25168287
    [Google Scholar]
  77. Gagné J.P. Isabelle M. Lo K.S. Bourassa S. Hendzel M.J. Dawson V.L. Dawson T.M. Poirier G.G. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008 36 22 6959 6976 10.1093/nar/gkn771 18981049
    [Google Scholar]
  78. Ruscetti T. Lehnert B.E. Halbrook J. Le Trong H. Hoekstra M.F. Chen D.J. Peterson S.R. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 1998 273 23 14461 14467 10.1074/jbc.273.23.14461 9603959
    [Google Scholar]
  79. Dregalla R.C. Zhou J. Idate R.R. Battaglia C.L.R. Liber H.L. Bailey S.M. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: Suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany NY) 2010 2 10 691 708 10.18632/aging.100210 21037379
    [Google Scholar]
  80. Nagy Z. Kalousi A. Furst A. Koch M. Fischer B. Soutoglou E. Tankyrases promote homologous recombination and check point activation in response to DSBs. PLoS Genet. 2016 12 2 e1005791 10.1371/journal.pgen.1005791 26845027
    [Google Scholar]
  81. McGonigle S. Chen Z. Wu J. Chang P. Kolber-Simonds D. Ackermann K. Twine N.C. Shie J.L. Miu J.T. Huang K.C. Moniz G.A. Nomoto K. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget 2015 6 38 41307 41323 10.18632/oncotarget.5846 26513298
    [Google Scholar]
  82. Plummer R. Dua D. Cresti N. Drew Y. Stephens P. Foegh M. Knudsen S. Sachdev P. Mistry B.M. Dixit V. McGonigle S. Hall N. Matijevic M. McGrath S. Sarker D. First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor. Br. J. Cancer 2020 123 4 525 533 10.1038/s41416‑020‑0916‑5 32523090
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329753241015114119
Loading
/content/journals/ccdt/10.2174/0115680096329753241015114119
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Wnt/β-catenin signaling ; tankyrase inhibitors ; PARP ; tankyrase ; ADP-ribosylation ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test