Skip to content
2000
image of Transforming Lung Cancer Care: The Role of Transferosomes in Modern Drug Delivery

Abstract

Cancer stands as one of the leading causes of death worldwide, and lung cancer represents its most aggressive and persistent form. Traditional strategies for addressing lung cancer involve various medical therapies such as radiotherapy, chemotherapy, and surgical excision. Despite their prevalence, these conventional methods lack precision and inadvertently cause collateral damage to neighbouring healthy cells. Recently, nanotechnology has emerged as a potential strategy for the treatment and management of lung carcinomas, bringing about a transformative shift in existing approaches. The primary focus of this shift is on minimizing harmful effects and improving the bioavailability of chemotherapy drugs specifically targeted at tumour cells. Currently, transferosome nanocarrier systems are widely employed to overcome the obstacles presented by lung cancer. The utilisation of transferosome-loaded therapeutic medication administration technologies holds tremendous potential in regulating tumour cell growth and treating lung cancer. The purpose of this study is to provide an overview and analysis of current advancements in transferosome-based drug delivery systems, employing inhalational nanoparticle strategies for precise drug targeting in lung cancer management.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329205240905053934
2024-10-29
2025-04-15
Loading full text...

Full text loading...

References

  1. Fox A.H. Nishino M. Osarogiagbon R.U. Rivera M.P. Rosenthal L.S. Smith R.A. Farjah F. Sholl L.M. Silvestri G.A. Johnson B.E. Acquiring tissue for advanced lung cancer diagnosis and comprehensive biomarker testing: A national lung cancer roundtable best‐practice guide. CA Cancer J. Clin. 2023 73 4 358 375 10.3322/caac.21774 36859638
    [Google Scholar]
  2. Bade B.C. Dela Cruz C.S. Lung Cancer 2020. Clin. Chest Med. 2020 41 1 1 24 10.1016/j.ccm.2019.10.001 32008623
    [Google Scholar]
  3. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  4. Nooreldeen R. Bach H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021 22 16 8661
    [Google Scholar]
  5. Hoy H. Lynch T. Beck M. Surgical treatment of lung cancer. Crit. Care Nurs. Clin. 2019 31 3 303 313 10.1016/j.cnc.2019.05.002 31351552
    [Google Scholar]
  6. Wang B. Hu W. Yan H. Chen G. Zhang Y. Mao J. Wang L. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed. Pharmacother. 2021 136 111249 10.1016/j.biopha.2021.111249 33450493
    [Google Scholar]
  7. Sainz de Aja J. Dost A.F. Kim C.F. Alveolar progenitor cells and the origin of lung cancer. J. Intern. Med. 2021 289 5 629 635 10.1111/joim.13201 33340175
    [Google Scholar]
  8. Sukumar U.K. Bhushan B. Dubey P. Matai I. Sachdev A. Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett. 2013 3 1 45 10.1186/2228‑5326‑3‑45
    [Google Scholar]
  9. S M S. Naveen N.R. Rao G.K. Gopan G. Chopra H. Park M.N. Alshahrani M.M. Jose J. Emran T.B. Kim B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front. Oncol. 2022 12 994155 10.3389/fonc.2022.994155 36330493
    [Google Scholar]
  10. Gu M. Luan J. Song K. Qiu C. Zhang X. Zhang M. Development of paclitaxel loaded pegylated gelatin targeted nanoparticles for improved treatment efficacy in non-small cell lung cancer (NSCLC): An in vitro and in vivo evaluation study. Acta Biochim. Pol. 2021 68 4 583 591 10.18388/abp.2020_5431 34355554
    [Google Scholar]
  11. Patra J.K. Das G. Fraceto L.F. Campos E.V. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  12. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024 16 10 1835
    [Google Scholar]
  13. Gu X Elemene injection overcomes paclitaxel resistance in breast cancer through ar/runx1 signal: Network pharmacology and experimental validation. Curr. Pharmaceu. Design 2024 2024
    [Google Scholar]
  14. Juaid N. Amin A. Abdalla A. Reese K. Alamri Z. Moulay M. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. Jo. Mol. Sci. 2021 22 19 10774
    [Google Scholar]
  15. Al Hrout A. Cervantes-Gracia K. Chahwan R. Amin A. Modelling liver cancer microenvironment using a novel 3D culture system. Sci. Rep. 2022 12 1 8003 10.1038/s41598‑022‑11641‑7 35568708
    [Google Scholar]
  16. Amin A. Farrukh A. Murali C. Soleimani A. Praz F. Graziani G. Brim H. Ashktorab H. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules 2021 26 13 3855 10.3390/molecules26133855 34202689
    [Google Scholar]
  17. Abdalla Y. Abdalla A. Hamza A.A. Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol. 2022 12 777500 10.3389/fphar.2021.777500 35177980
    [Google Scholar]
  18. Murali C. Mudgil P. Gan C.Y. Tarazi H. El-Awady R. Abdalla Y. Amin A. Maqsood S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep. 2021 11 1 7062 10.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  19. Xie Y. Mu C. Kazybay B. Sun Q. Kutzhanova A. Nazarbek G. Xu N. Nurtay L. Wang Q. Amin A. Li X. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv. 2021 28 1 2187 2197 10.1080/10717544.2021.1977422 34662244
    [Google Scholar]
  20. Guven D.C. Sahin T.K. Erul E. Rizzo A. Ricci A.D. Aksoy S. Yalcin S. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Mol. Biosci. 2022 9 1039121 10.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  21. Dall’Olio F.G. Rizzo A. Mollica V. Massucci M. Maggio I. Massari F. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis. Immunotherapy 2021 13 3 257 270
    [Google Scholar]
  22. Ahmad J. Akhter S. Rizwanullah M. Amin S. Rahman M. Ahmad M.Z. Rizvi M.A. Kamal M.A. Ahmad F.J. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol. Sci. Appl. 2015 8 Nov 55 66 26640374
    [Google Scholar]
  23. Sharma P. Mehta M. Dhanjal D.S. Kaur S. Gupta G. Singh H. Thangavelu L. Rajeshkumar S. Tambuwala M. Bakshi H.A. Chellappan D.K. Dua K. Satija S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 2019 309 108720 10.1016/j.cbi.2019.06.033 31226287
    [Google Scholar]
  24. Kumar M. Hilles A.R. Almurisi S.H. Bhatia A. Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review. JCIS Open 2023 12 100095 10.1016/j.jciso.2023.100095
    [Google Scholar]
  25. Nikjoo D. van der Zwaan I. Brülls M. Tehler U. Frenning G. Hyaluronic acid hydrogels for controlled pulmonary drug delivery—a particle engineering approach. Pharmaceutics 2021 13 11 1878 10.3390/pharmaceutics13111878 34834293
    [Google Scholar]
  26. Borghardt J.M. Kloft C. Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018 2018 1 11 10.1155/2018/2732017 30018677
    [Google Scholar]
  27. Pulivendala G. Bale S. Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv. Transl. Res. 2020 10 2 339 353 10.1007/s13346‑019‑00690‑7 31872342
    [Google Scholar]
  28. Thakur A.K. Chellappan D.K. Dua K. Mehta M. Satija S. Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin. Ther. Pat. 2020 30 5 339 53 10.1080/13543776.2020.1741547
    [Google Scholar]
  29. Liu Q. Guan J. Qin L. Zhang X. Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 2020 25 1 150 159 10.1016/j.drudis.2019.09.023 31600580
    [Google Scholar]
  30. García-Fernández A. Sancenón F. Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv. Drug Deliv. Rev. 2021 177 113953 10.1016/j.addr.2021.113953 34474094
    [Google Scholar]
  31. Nelson H.S. Inhalation devices, delivery systems, and patient technique. Ann. Allergy Asthma Immunol. 2016 117 6 606 612 10.1016/j.anai.2016.05.006 27979017
    [Google Scholar]
  32. Hassanpour Aghdam M. Ghanbarzadeh S. Javadzadeh Y. Hamishehkar H. Aggregated nanotransfersomal dry powder inhalation of itraconazole for pulmonary drug delivery. Adv. Pharm. Bull. 2016 6 1 57 64 10.15171/apb.2016.009 27123418
    [Google Scholar]
  33. Scichilone N. Benfante A. Bocchino M. Braido F. Paggiaro P. Papi A. Santus P. Sanduzzi A. Which factors affect the choice of the inhaler in chronic obstructive respiratory diseases? Pulm. Pharmacol. Ther. 2015 31 63 67 10.1016/j.pupt.2015.02.006 25724817
    [Google Scholar]
  34. Al Khatib A.O. El-Tanani M. Al-Obaidi H. Inhaled medicines for targeting non-small cell lung cancer. Pharmaceutics 2023 15 12 2777 10.3390/pharmaceutics15122777 38140117
    [Google Scholar]
  35. Jin Q. Zhu W. Zhu J. Zhu J. Shen J. Liu Z. Yang Y. Chen Q. Nanoparticle‐mediated delivery of inhaled immunotherapeutics for treating lung metastasis. Adv. Mater. 2021 33 7 2007557 10.1002/adma.202007557 33448035
    [Google Scholar]
  36. Bozzuto G Molinari A Liposomes as nanomedical devices. Int. J. Nanomed. 2015 10 975 99 10.2147/IJN.S68861
    [Google Scholar]
  37. Ganesan P. Ramalingam P. Karthivashan G. Ko Y.T. Choi D.K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int. J. Nanomed. 2018 13 1569 83 10.2147/IJN.S155593
    [Google Scholar]
  38. Pridgen E.M. Alexis F. Farokhzad O.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opinion Drug Del. 2015 12 1459 73 10.1517/17425247.2015.1018175
    [Google Scholar]
  39. Pérez-Ferreiro M. Abelairas M. Criado A. Gómez A. Mosquera I.J. Dendrimers J. Exploring their wide structural variety and applications. Polymers 2023 15 21 10.3390/polym15224369
    [Google Scholar]
  40. Jin G.W. Rejinold N.S. Choy J.H. Multifunctional polymeric micelles for cancer therapy. Polymers 2022 14 22
    [Google Scholar]
  41. Shaimoldina A. Sergazina A. Myrzagali S. Nazarbek G. Omarova Z. Mirza O. Fan H. Amin A. Zhou W. Xie Y. Carbon nanoparticles neutralize carbon dioxide (CO 2) in cytotoxicity: Potent carbon emission induced resistance to anticancer nanomedicine and antibiotics. Ecotoxicol. Environ. Saf. 2024 273 116024 10.1016/j.ecoenv.2024.116024 38394753
    [Google Scholar]
  42. El-kharrag R. Amin A. Greish Y.E. Low temperature synthesis of monolithic mesoporous magnetite nanoparticles. Ceram. Int. 2012 38 1 627 634 10.1016/j.ceramint.2011.07.052
    [Google Scholar]
  43. El-kharrag R. Abdel Halim S.S. Amin A. Greish Y.E. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications. Int. J. Polym. Mater. 2019 68 1-3 73 82 10.1080/00914037.2018.1525725
    [Google Scholar]
  44. Ibrahim S. Baig B. Hisaindee S. Darwish H. Abdel-Ghany A. El-Maghraby H. Amin A. Greish Y. Development and evaluation of crocetin-functionalized pegylated magnetite nanoparticles for hepatocellular carcinoma. Molecules 2023 28 7 2882 10.3390/molecules28072882 37049645
    [Google Scholar]
  45. Elmehrath S. Nguyen H.L. Karam S.M. Amin A. Greish Y.E. BioMOF-based anti-cancer drug delivery systems. Nanomaterials 2023 13 5
    [Google Scholar]
  46. Benassi E. Fan H. Sun Q. Dukenbayev K. Wang Q. Shaimoldina A. Tassanbiyeva A. Nurtay L. Nurkesh A. Kutzhanova A. Mu C. Dautov A. Razbekova M. Kabylda A. Yang Q. Li Z. Amin A. Li X. Xie Y. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: The case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Adv. 2021 3 8 2222 2235 10.1039/D0NA00958J 36133773
    [Google Scholar]
  47. Nazarbek G. Kutzhanova A. Nurtay L. Mu C. Kazybay B. Li X. Ma C. Amin A. Xie Y. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing ( Rhizoma polygonati ) and Goji ( Lycium chinense ). Nanoscale Adv. 2021 3 23 6728 6738 10.1039/D1NA00475A 36132653
    [Google Scholar]
  48. Rai S. Pandey V. Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017 8 1 1325708 10.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  49. Balata G.F. Faisal M.M. Elghamry H.A. Sabry S.A. Preparation and characterization of ivabradine hcl transfersomes for enhanced transdermal delivery. J. Drug Deliv. Sci. Technol. 2020 60 101921 10.1016/j.jddst.2020.101921
    [Google Scholar]
  50. Apostolou M. Assi S. Fatokun A.A. Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 2021 110 8 2859 2872 10.1016/j.xphs.2021.04.012 33901564
    [Google Scholar]
  51. Khan I. Needham R. Yousaf S. Houacine C. Islam Y. Bnyan R. Sadozai S.K. Elrayess M.A. Elhissi A. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery. J. Drug Deliv. Sci. Technol. 2021 66 102822 10.1016/j.jddst.2021.102822
    [Google Scholar]
  52. Chauhan N. An updated review on transfersomes: A novel vesicular system for transdermal drug delivery. Uni. J. Pharmaceu. Res. 2017 2 4 49 52 10.22270/ujpr.v2i4.RW2
    [Google Scholar]
  53. Opatha S.A. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020 12 1 23
    [Google Scholar]
  54. Sharma U. VPJNK. A review on novel vesicular drug delivery system: Transfersomes. Int. J. Pharma. Life Sci. 2020 11 07 6812 6824
    [Google Scholar]
  55. Chaurasiya P. Ganju E. Upmanyu N. Ray S.K. Jain P. Transfersomes: a novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019 9 1 279 285 10.22270/jddt.v9i1.2198
    [Google Scholar]
  56. Yadav A. NSRVMR. Transfersome for treatment of herpes zooster of antiviral drugs. World J. Pharm. Res. 2019 8 9 845 869
    [Google Scholar]
  57. Chaurasia L. Singh S. Arora K. Saxena C. Transferosome: A suitabledelivery system for percutaneous administration. Curr. Res. Pharmaceu. Sci. 2019 9 1 1 11 10.24092/CRPS.2019.090101
    [Google Scholar]
  58. Tiwari G. Tiwari R. Singh R. Rai A.K. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally. Nanosci. Nanotechnol. 2020 10 1 12 20 10.2174/2210681208666180820145327
    [Google Scholar]
  59. Jain A.K Transfersomes: Ultradeformable vesicles for transdermal drug delivery Asian J. Biomat. Res. 2017 12 9 855
    [Google Scholar]
  60. Kumar A. TRANSFEROSOME: A recent approach for transdermal drug delivery. J. Drug Deliv. Ther. 2018 8 5 100 104 10.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  61. Pawar A.Y. Transfersome: A novel technique which improves transdermal permeability. Asian J. Pharm. 2016 10 4 425 436
    [Google Scholar]
  62. Solanki D. TRANSFEROSOMES- A review. World J. Pharm. Pharm. Sci. 2016 5 10 435 449
    [Google Scholar]
  63. Sarmah P.J. Transfersomes based transdermal drug delivery: An overview. Int. J. Adv. Pharmaceu. Res. 2013 4 12 1 9
    [Google Scholar]
  64. Kodi S.R. Reddy M.S. Transferosomes: A novel topical approach. J. Drug Deliv. Ther. 2023 13 2 126 131 10.22270/jddt.v13i2.5952
    [Google Scholar]
  65. Kumar R.S. Pradhan M. Transferosomes: Vesicular carrier for both hydrophilic and lipophilic drugs. J. Pharm. Res. Int. 2022 34 27 106 120 10.9734/jpri/2022/v34i27B36013
    [Google Scholar]
  66. Preprint E. Azmana M. Azmir M. Arifin B. Mahmood S. Azmana M. A review on transfersomes: Promising carrier for transdermal drug delivery current science and technology. Preprint 2022
    [Google Scholar]
  67. Lokhande S.J.M. Transferosomes: A novel approach to drug delivery. Int. J. Pharma. Sci. 2023 1 9 279 287
    [Google Scholar]
  68. Wu P.S. Li Y.S. Kuo Y.C. Tsai S.J.J. Lin C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019 24 3 600 10.3390/molecules24030600 30743989
    [Google Scholar]
  69. Agarwal S. Kumar R. Ammar Y. Athar W. Akhtar A. Lung cancer therapy using naturally occurring products and nanotechnology. Innov. J. Med. Sci 2022 10 10.22159/ijms.2022v10i4.44993
    [Google Scholar]
  70. Chauhan P. Tyagi B.K. Herbal novel drug delivery systems and transfersomes. J. Drug Deliv. Ther. 2018 8 3 10.22270/jddt.v8i3.1772
    [Google Scholar]
  71. Choudhury A.K. TRANSFEROSOMES: An advanced novel technique for transdermal drug delivery. World J. Pharm. Pharm. Sci. 2023 12 4 127 140
    [Google Scholar]
  72. Joseph T.M. Luke P.M. Transferosomes: Novel delivery system for increasing the skin permeation of drugs. Int. J. Med. Pharmaceu. Sci. 2022 10 2 01 10 10.31782/IJMPS.2020.10202
    [Google Scholar]
  73. Bhokare B. Transfersomes: A novel drug delivery system. Int. J. Res. Eng. Appl. Sci. 2017 7 6 189 198
    [Google Scholar]
  74. Alipour S. Montaseri H. Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf. B Biointerfaces 2010 81 2 521 529 10.1016/j.colsurfb.2010.07.050 20732796
    [Google Scholar]
  75. Khan I. Apostolou M. Bnyan R. Houacine C. Elhissi A. Yousaf S.S. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int. J. Pharm. 2020 575 118919 10.1016/j.ijpharm.2019.118919 31816351
    [Google Scholar]
  76. Sharma A. Shambhwani D. Pandey S. Singh J. Lalhlenmawia H. Kumarasamy M. Advances in lung cancer treatment using nanomedicines. ACS Omega 2023 8 10 41 10.1021/acsomega.2c04078
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329205240905053934
Loading
/content/journals/ccdt/10.2174/0115680096329205240905053934
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test