Skip to content
2000
image of Fe3O4-viral-like Mesoporous Silica Nanoparticle(Fe3O4-vMSN)-Sustained Release of Lenvatinib for Targeted Treatment of Hepatocellular Carcinoma

Abstract

Background

Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhibits receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous administration of Lenvatinib.

Aims

This study aimed to construct nanocomposites that can efficiently support Lenvatinib and target liver cancer tissues and cells.

Objective

In this study, ferric oxide-viral-like mesoporous silica nanoparticles-folic acid (FeO-vMSN-FA) nanocomposites loaded with Lenvatinib were constructed, and their anti-hepatocellular carcinoma effects were evaluated.

Methods

The hydrothermal method was used to synthesize ferric oxide (FeO). Ferric oxide-viral-like mesoporous silica nanoparticles (FeO-vMSN) were synthesized using a two-phase method. Then, FeO-vMSN was modified with folic acid (FeO-vMSN-FA) to better target tumor cells.

Results

The experimental data showed that FeO-vMSN-FA nanocomposites were successfully synthesized and could be loaded with Lenvatinib (Len@ FeO-vMSN-FA). FeO-vMSN-FA had good stability and biocompatibility, and it can release the loaded Lenvatinib faster in an acidic environment (pH 5.5). CCK8 assay and flow cytometry showed that HepG2 cells in the Len@ FeO-vMSN group had the lowest cell viability and the highest apoptosis rate, confirming the anticancer properties of Len@ FeO-vMSN-FA . In addition, transwell experiments showed that the migration and invasion ability of HepG2 cells in the Len@ FeO-vMSN-FA group were significantly inhibited. fluorescence imaging in mice confirmed the enhanced tumor-targeting ability of FeO-vMSN-FA. The tumor volume of the Len@ FeO-vMSN-FA group was significantly reduced, and there was no significant effect on body weight. Moreover, serum liver function index (ALT and AST) and HE staining showed that Len@ FeO-vMSN-FA did not cause obvious damage to organ tissue.

Conclusion

Len@ FeO-vMSN-FA has a good anti-liver cancer effect. FeO-vMSN-FA can be used as an alternative platform for drug delivery, providing more options for cancer therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329105241031093859
2025-01-14
2025-04-16
Loading full text...

Full text loading...

References

  1. Gilles H. Garbutt T. Landrum J. Hepatocellular Carcinoma. Crit. Care Nurs. Clin. North Am. 2022 34 3 289 301 10.1016/j.cnc.2022.04.004 36049848
    [Google Scholar]
  2. Simón Serrano S. Tavecchio M. Grönberg A. Sime W. Jemaà M. Moss S. Gregory M.A. Gallay P. Elmér E. Hansson M.J. Massoumi R. Novel cyclophilin inhibitor decreases cell proliferation and tumor growth in models of hepatocellular carcinoma. Cancers (Basel) 2021 13 12 3041 10.3390/cancers13123041 34207224
    [Google Scholar]
  3. Chaturvedi V.K. Singh A. Dubey S.K. Hetta H.F. John J. Singh M.P. Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma. Microb. Pathog. 2019 128 184 194 10.1016/j.micpath.2019.01.004 30611768
    [Google Scholar]
  4. Bhuniya S. Moon H. Lee H. Hong K.S. Lee S. Yu D.Y. Kim J.S. Uridine-based paramagnetic supramolecular nanoaggregate with high relaxivity capable of detecting primitive liver tumor lesions. Biomaterials 2011 32 27 6533 6540 10.1016/j.biomaterials.2011.05.054 21684594
    [Google Scholar]
  5. Bernardi M. Angeli P. Claria J. Moreau R. Gines P. Jalan R. Caraceni P. Fernandez J. Gerbes A.L. O’Brien A.J. Trebicka J. Thevenot T. Arroyo V. Albumin in decompensated cirrhosis: New concepts and perspectives. Gut 2020 69 6 1127 1138 10.1136/gutjnl‑2019‑318843 32102926
    [Google Scholar]
  6. Tsuchiya N. Sawada Y. Endo I. Saito K. Uemura Y. Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol. 2015 21 37 10573 10583 10.3748/wjg.v21.i37.10573 26457017
    [Google Scholar]
  7. Vibert E. Schwartz M. Olthoff K.M. Advances in resection and transplantation for hepatocellular carcinoma. J. Hepatol. 2020 72 2 262 276 10.1016/j.jhep.2019.11.017 31954491
    [Google Scholar]
  8. Ricke J. Klümpen H.J. Amthauer H. Bargellini I. Bartenstein P. de Toni E.N. Gasbarrini A. Pech M. Peck-Radosavljevic M. Popovič P. Rosmorduc O. Schott E. Seidensticker M. Verslype C. Sangro B. Malfertheiner P. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J. Hepatol. 2019 71 6 1164 1174 10.1016/j.jhep.2019.08.006 31421157
    [Google Scholar]
  9. Cheng Y. Zhao P. Wu S. Yang T. Chen Y. Zhang X. He C. Zheng C. Li K. Ma X. Xiang G. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm. 2018 545 1-2 261 273 10.1016/j.ijpharm.2018.05.007 29730175
    [Google Scholar]
  10. Cha D.I. Lee M.W. Song K.D. Ko S.E. Rhim H. Ablative outcomes of various energy modes for no-touch and peripheral tumor-puncturing radiofrequency ablation: An ex vivo simulation study. Korean J. Radiol. 2022 23 2 189 201 10.3348/kjr.2021.0451 35029079
    [Google Scholar]
  11. Feng D. Zhou S. Zhou Y. Jiang Y. Sun Q. Song W. Cui Q. Yan W. Wang J. Effect of total glycosides of Cistanche deserticola on the energy metabolism of human HepG2 cells. Front. Nutr. 2023 10 1117364 10.3389/fnut.2023.1117364 36814512
    [Google Scholar]
  12. Fan Z. Zhou P. Jin B. Li G. Feng L. Zhuang C. Wang S. Recent therapeutics in hepatocellular carcinoma. Am. J. Cancer Res. 2023 13 1 261 275 36777510
    [Google Scholar]
  13. Ladju R.B. Ulhaq Z.S. Soraya G.V. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J. Gastroenterol. 2022 28 2 176 187 10.3748/wjg.v28.i2.176 35110943
    [Google Scholar]
  14. Huang X. Gan G. Wang X. Xu T. Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy 2019 15 7 1258 1279 10.1080/15548627.2019.1580105 30786811
    [Google Scholar]
  15. Dimitroulis D. Damaskos C. Valsami S. Davakis S. Garmpis N. Spartalis E. Athanasiou A. Moris D. Sakellariou S. Kykalos S. Tsourouflis G. Garmpi A. Delladetsima I. Kontzoglou K. Kouraklis G. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World J. Gastroenterol. 2017 23 29 5282 5294 10.3748/wjg.v23.i29.5282 28839428
    [Google Scholar]
  16. Hiraoka A. Michitaka K. Kumada T. Izumi N. Kadoya M. Kokudo N. Kubo S. Matsuyama Y. Nakashima O. Sakamoto M. Takayama T. Kokudo T. Kashiwabara K. Eguchi S. Yamashita T. Kudo M. Prediction of prognosis of intermediate-stage HCC patients: Validation of the tumor marker score in a nationwide database in Japan. Liver Cancer 2019 8 5 403 411 10.1159/000495944 31768348
    [Google Scholar]
  17. Ding X.X. Zhu Q.G. Zhang S.M. Guan L. Li T. Zhang L. Wang S.Y. Ren W.L. Chen X.M. Zhao J. Lin S. Liu Z.Z. Bai Y.X. He B. Zhang H.Q. Precision medicine for hepatocellular carcinoma: Driver mutations and targeted therapy. Oncotarget 2017 8 33 55715 55730 10.18632/oncotarget.18382 28903454
    [Google Scholar]
  18. Luo T. Zhang S.G. Zhu L.F. Zhang F.X. Li W. Zhao K. Wen X.X. Yu M. Zhan Y.Q. Chen H. Ge C.H. Gao H.Y. Wang L. Yang X.M. Li C.Y. A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth. J Exp Clin Cancer Res 2019 38 1 130 10.1186/s13046‑019‑1104‑4.
    [Google Scholar]
  19. Gong X. Qin S. Study progression of anti-angiogenetic therapy and its combination with other agents for the treatment of advanced hepatocellular carcinoma. Hepatobiliary Surg. Nutr. 2018 7 6 466 474 10.21037/hbsn.2018.11.04 30652091
    [Google Scholar]
  20. Li Y. Lin M. Wang S. Cao B. Li C. Li G. Novel angiogenic regulators and anti-angiogenesis drugs targeting angiogenesis signaling pathways: Perspectives for targeting angiogenesis in lung cancer. Front. Oncol. 2022 12 842960 10.3389/fonc.2022.842960 35372042
    [Google Scholar]
  21. Xu Q. Huang D. Guo J. Zhao J. Resistance of lenvatinib in hepatocellular carcinoma. Curr. Cancer Drug Targets 2022 22 11 865 878 10.2174/1568009622666220428111327 36267045
    [Google Scholar]
  22. Xia D. Bai W. Wang E. Li J. Chen X. Wang Z. Huang M. Huang M. Sun J. Yang W. Lin Z. Wu J. Li Z. Yang S. Zhu X. Chen Z. Zhang Y. Fan W. Mai Q. Ding R. Nie C. Feng L. Li X. Huang W. Sun J. Wang Q. Lv Y. Li X. Luo B. Wang Z. Yuan J. Guo W. Li K. Li B. Li R. Yin Z. Xia J. Han G. Lenvatinib with or without concurrent drug-eluting beads transarterial chemoembolization in patients with unresectable, advanced hepatocellular carcinoma: A real-world, multicenter, retrospective study. Liver Cancer 2022 11 4 368 382 10.1159/000523849 35978600
    [Google Scholar]
  23. Sondhi P. Maruf M.H.U. Stine K.J. Nanomaterials for biosensing lipopolysaccharide. Biosensors (Basel) 2019 10 1 2 10.3390/bios10010002 31877825
    [Google Scholar]
  24. Tang L. Zhang A. Zhang Z. Zhao Q. Li J. Mei Y. Yin Y. Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun. (Lond.) 2022 42 2 141 163 10.1002/cac2.12255 35001556
    [Google Scholar]
  25. Liu T. Lu Y. Zhan R. Qian W. Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv. Drug Deliv. Rev. 2023 193 114670 10.1016/j.addr.2022.114670 36538990
    [Google Scholar]
  26. Sarmah P. Choudhary B. Nanomaterials for targeted delivery of anticancer drugs: An overview. Curr. Nanomater. 2022 7 1 31 39 10.2174/2405461506666210119095130
    [Google Scholar]
  27. Liu J. Li S. Wang J. Li N. Zhou J. Chen H. Application of Nano Drug Delivery System (NDDS) in cancer therapy: A perspective. Recent Pat Anticancer Drug Discov 2023 18 2 125 132 10.2174/1574892817666220713150521 35838209
    [Google Scholar]
  28. Liu Y. Ou H. Pei X. Jiang B. Ma Y. Liu N. Wen C. Peng C. Hu X. Chemo-drug controlled-release strategies of nanocarrier in the development of cancer therapeutics. Curr. Med. Chem. 2021 28 31 6307 6322 10.2174/0929867327666200605153919 32503398
    [Google Scholar]
  29. Ko M.J. Min S. Hong H. Yoo W. Joo J. Zhang Y.S. Kang H. Kim D.H. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact. Mater. 2024 32 66 97 10.1016/j.bioactmat.2023.09.015 37822917
    [Google Scholar]
  30. Kralj S. Potrc T. Kocbek P. Marchesan S. Makovec D. Design and fabrication of magnetically responsive nanocarriers for drug delivery. Curr. Med. Chem. 2017 24 5 454 469 10.2174/0929867323666160813211736 27528059
    [Google Scholar]
  31. Naqvi S. Samim M. Dinda A. Iqbal Z. Telagoanker S. Ahmed F. Maitra A. Impact of magnetic nanoparticles in biomedical applications. Recent Pat. Drug Deliv. Formul. 2009 3 2 153 161 10.2174/187221109788452249 19519575
    [Google Scholar]
  32. Alsharif N.A. Merzaban J.S. Kosel J. Biofunctionalization of magnetic nanomaterials. J Vis Exp 2020 10.3791/61360
    [Google Scholar]
  33. Farzin A. Etesami S.A. Quint J. Memic A. Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020 9 9 1901058 10.1002/adhm.201901058 32196144
    [Google Scholar]
  34. Hirsjärvi S. Passirani C. Benoit J.P. Passive and active tumour targeting with nanocarriers. Curr. Drug Discov. Technol. 2011 8 3 188 196 10.2174/157016311796798991 21513482
    [Google Scholar]
  35. Zhang L. Liu Z. Liu Y. Wang Y. Tang P. Wu Y. Huang H. Gan Z. Liu J. Wu D. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance. Biomaterials 2020 230 119655 10.1016/j.biomaterials.2019.119655 31812276
    [Google Scholar]
  36. Gandhi S.N. Agrawal S. Nagendran S. Gurjar P. Iron oxide nanoparticles: Tuning to advanced nano drug delivery. Nanosci. Nanotechnol. Asia 2020 10 6 734 747 10.2174/2210681209666190618112412
    [Google Scholar]
  37. Gu Y. Sun Y. Wang X. Li H. Qiu J. Lu W. Application of photoacoustic computed tomography in biomedical imaging: A literature review. Bioeng. Transl. Med. 2023 8 2 e10419 10.1002/btm2.10419 36925681
    [Google Scholar]
  38. Vangijzegem T. Stanicki D. Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv. 2019 16 1 69 78 10.1080/17425247.2019.1554647 30496697
    [Google Scholar]
  39. Zhang L. Hajebrahimi S. Tong S. Gao X. Cheng H. Zhang Q. Hinojosa D.T. Jiang K. Hong L. Huard J. Bao G. Force-mediated endocytosis of iron oxide nanoparticles for magnetic targeting of stem cells. ACS Appl. Mater. Interfaces 2023 15 44 50574 50585 10.1021/acsami.2c20265 37145890
    [Google Scholar]
  40. Nabavinia M. Beltran-Huarac J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl. Bio Mater. 2020 3 12 8172 8187 10.1021/acsabm.0c00947 35019598
    [Google Scholar]
  41. Park H. Hwang M.P. Lee K.H. Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int. J. Nanomedicine 2013 8 4543 4552 24285924
    [Google Scholar]
  42. Tabassum N. Singh V. Chaturvedi V.K. Vamanu E. Singh M.P. A facile synthesis of flower-like iron oxide nanoparticles and its efficacy measurements for antibacterial, cytotoxicity and antioxidant activity. Pharmaceutics 2023 15 6 1726 10.3390/pharmaceutics15061726 37376174
    [Google Scholar]
  43. Gabrielyan L. Hovhannisyan A. Gevorgyan V. Ananyan M. Trchounian A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl. Microbiol. Biotechnol. 2019 103 6 2773 2782 10.1007/s00253‑019‑09653‑x 30706116
    [Google Scholar]
  44. Albalawi A.E. Khalaf A.K. Alyousif M.S. Alanazi A.D. Baharvand P. Shakibaie M. Mahmoudvand H. Fe3O4@piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomed Pharmacother 2021 139 111566 10.1016/j.biopha.2021.111566.
    [Google Scholar]
  45. Ganapathe L.S. Mohamed M.A. Mohamad Yunus R. Berhanuddin D.D. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 2020 6 4 68 10.3390/magnetochemistry6040068.
    [Google Scholar]
  46. Singh Chauhan C. Garg A. Agrawal R. An insight into mesoporous silica nanoparticles: Ray of hope for cancer management. Curr. Cancer Ther. Rev. 2024 20 4 341 356 10.2174/0115733947242447231003035334
    [Google Scholar]
  47. Godakhindi V. Tarannum M. Dam S.K. Vivero-Escoto J.L. Mesoporous silica nanoparticles as an ideal platform for cancer immunotherapy: Recent advances and future directions. Adv. Healthc. Mater. 2024 13 20 2400323 10.1002/adhm.202400323 38653190
    [Google Scholar]
  48. Gisbert-Garzarán M. Lozano D. Vallet-Regí M. Mesoporous silica nanoparticles for targeting subcellular organelles. Int. J. Mol. Sci. 2020 21 24 9696 10.3390/ijms21249696 33353212
    [Google Scholar]
  49. Sarkar S. Ekbal Kabir M. Kalita J. Manna P. Mesoporous silica nanoparticles: Drug Delivery vehicles for antidiabetic molecules. ChemBioChem 2023 24 7 e202200672 10.1002/cbic.202200672 36719179
    [Google Scholar]
  50. Barkat A. Beg S. Panda S.K. S Alharbi K. Rahman M. Ahmed F.J. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin. Cancer Biol. 2021 69 365 375 10.1016/j.semcancer.2019.08.022 31442571
    [Google Scholar]
  51. Zhang R. Yan F. Chen Y. Exogenous physical irradiation on titania semiconductors: Materials chemistry and tumor‐specific nanomedicine. Adv. Sci. (Weinh.) 2018 5 12 1801175 10.1002/advs.201801175 30581710
    [Google Scholar]
  52. Kankala R.K. Han Y.H. Na J. Lee C.H. Sun Z. Wang S.B. Kimura T. Ok Y.S. Yamauchi Y. Chen A.Z. Wu K.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  53. Ding C. Yang C. Cheng T. Wang X. Wang Q. He R. Sang S. Zhu K. Xu D. Wang J. Liu X. Zhang X. Macrophage-biomimetic porous Se@SiO2 nanocomposites for dual modal immunotherapy against inflammatory osteolysis. J. Nanobiotechnology 2021 19 1 382 10.1186/s12951‑021‑01128‑4 34809618
    [Google Scholar]
  54. Hou F. Teng Z. Ru J. Liu H. Li J. Zhang Y. Sun S. Guo H. Flower-like mesoporous silica nanoparticles as an antigen delivery platform to promote systemic immune response. Nanomedicine 2022 42 102541 10.1016/j.nano.2022.102541 35181525
    [Google Scholar]
  55. Sun K. Gao Z. Zhang Y. Wu H. You C. Wang S. An P. Sun C. Sun B. Enhanced highly toxic reactive oxygen species levels from iron oxide core–shell mesoporous silica nanocarrier-mediated Fenton reactions for cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2018 6 37 5876 5887 10.1039/C8TB01731J 32254709
    [Google Scholar]
  56. Azlegini A. Javadpour S. Bahrololoom M.E. Liposome-Fe3 O4-doxorubicin mediated treatment of melanoma tumors. Adv. Pharm. Bull. 2023 13 2 309 316 10.34172/apb.2023.034 37342384
    [Google Scholar]
  57. Su R. Zeng J. Marcink T.C. Porotto M. Moscona A. O’Shaughnessy B. Host cell membrane capture by the SARS-CoV-2 spike protein fusion intermediate. ACS Cent. Sci. 2023 9 6 1213 1228 10.1021/acscentsci.3c00158 37396856
    [Google Scholar]
  58. Wang W. Wang P. Tang X. Elzatahry A.A. Wang S. Al-Dahyan D. Zhao M. Yao C. Hung C.T. Zhu X. Zhao T. Li X. Zhang F. Zhao D. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 2017 3 8 839 846 10.1021/acscentsci.7b00257 28852697
    [Google Scholar]
  59. Xu D. Song X. Zhou J. Ouyang X. Li J. Deng D. Virus-like hollow mesoporous silica nanoparticles for cancer combination therapy. Colloids Surf. B Biointerfaces 2021 197 111452 10.1016/j.colsurfb.2020.111452 33189035
    [Google Scholar]
  60. Häffner S.M. Parra-Ortiz E. Browning K.L. Jørgensen E. Skoda M.W.A. Montis C. Li X. Berti D. Zhao D. Malmsten M. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano 2021 15 4 6787 6800 10.1021/acsnano.0c10378 33724786
    [Google Scholar]
  61. Al-Salama Z.T. Syed Y.Y. Scott L.J. Lenvatinib: A review in hepatocellular carcinoma. Drugs 2019 79 6 665 674 10.1007/s40265‑019‑01116‑x 30993651
    [Google Scholar]
  62. Matrone A. Gambale C. Prete A. Elisei R. Sporadic medullary thyroid carcinoma: Towards a precision medicine. Front. Endocrinol. (Lausanne) 2022 13 864253 10.3389/fendo.2022.864253 35422765
    [Google Scholar]
  63. Gao Y. Zhang Y. Xia H. Ren Y. Zhang H. Huang S. Li M. Wang Y. Li H. Liu H. Biomimetic virus-like mesoporous silica nanoparticles improved cellular internalization for co-delivery of antigen and agonist to enhance tumor immunotherapy. Drug Deliv. 2023 30 1 2183814 10.1080/10717544.2023.2183814 36843529
    [Google Scholar]
  64. Niu Y. Yu M. Hartono S.B. Yang J. Xu H. Zhang H. Zhang J. Zou J. Dexter A. Gu W. Yu C. Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv. Mater. 2013 25 43 6233 6237 10.1002/adma.201302737 23946251
    [Google Scholar]
  65. Kefayat A. Hosseini M. Ghahremani F. Jolfaie N.A. Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J. Nanobiotechnology 2022 20 1 169 10.1186/s12951‑022‑01380‑2 35361226
    [Google Scholar]
  66. Matlou G.G. Abrahamse H. Nanoscale metal–organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem. 2022 10 971747 10.3389/fchem.2022.971747 36092660
    [Google Scholar]
  67. Ramalho M.J. Loureiro J.A. Coelho M.A.N. Pereira M.C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma. Pharmaceutics 2022 14 2 279 10.3390/pharmaceutics14020279 35214012
    [Google Scholar]
  68. Hazelton A.E. Technology assessment. How effective is medical care? Clin. Geriatr. Med. 1986 2 3 481 500 10.1016/S0749‑0690(18)30864‑4 2943385
    [Google Scholar]
  69. Zhao Y. Zhang Y.N. Wang K.T. Chen L. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2020 1874 1 188391 10.1016/j.bbcan.2020.188391 32659252
    [Google Scholar]
  70. Wei F. Cui X. Wang Z. Dong C. Li J. Han X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem Eng J 2021 408 127240 10.1016/j.cej.2020.127240.
    [Google Scholar]
  71. Lewinski N. Colvin V. Drezek R. Cytotoxicity of nanoparticles. Small 2008 4 1 26 49 10.1002/smll.200700595.
    [Google Scholar]
  72. Pyo C.E. Song M. Chang J.H. Preparation and in vitro cytotoxicity assessments of spherical silica-encapsulated liposome particles for highly efficient drug carriers. ACS Appl. Bio Mater. 2021 4 2 1350 1359 10.1021/acsabm.0c01240 35014486
    [Google Scholar]
  73. Suhail Y. Cain M.P. Vanaja K. Kurywchak P.A. Levchenko A. Kalluri R. Kshitiz Systems biology of cancer metastasis. Cell Syst. 2019 9 2 109 127 10.1016/j.cels.2019.07.003 31465728
    [Google Scholar]
  74. Läubli H. Borsig L. Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front. Immunol. 2019 10 2120 10.3389/fimmu.2019.02120 31552050
    [Google Scholar]
  75. Fang T. Jiao Z. You Y. Cao J. Wang C. Liu J. Zhao W. Lenvatinib inhibited HCC cell migration and invasion through regulating the transcription and ubiquitination of UHRF1 and DNMT1. Biochem. Pharmacol. 2023 210 115489 10.1016/j.bcp.2023.115489 36893815
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329105241031093859
Loading
/content/journals/ccdt/10.2174/0115680096329105241031093859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test