Skip to content
2000
image of Enhanced Detection of Gastrointestinal Malignancies using Machine Learning-Optimized Liquid Biopsy: A Mini Review

Abstract

Background

Gastrointestinal (GI) cancers represent some of the most common and lethal malignancies globally, underscoring the urgent need for improved diagnostic strategies. Traditional diagnostic methods, while effective to some degree, are often invasive and unsuitable for regular screenings.

Objective

This review article explores integrating machine learning (ML) with liquid biopsy techniques as a revolutionary approach to enhance the detection and monitoring of GI cancers. Liquid biopsies offer a non-invasive alternative for cancer detection through the analysis of circulating tumor DNA (ctDNA) and other biomarkers, which when combined with ML, can significantly improve diagnostic accuracy and patient outcomes.

Methods

We conducted a comprehensive review of recent advancements in liquid biopsy and ML, focusing on their synergistic potential in the early detection of GI cancers. The review addresses the application of next-generation sequencing and digital droplet PCR in enhancing the sensitivity and specificity of liquid biopsies.

Results

Machine learning algorithms have demonstrated remarkable ability in navigating complex datasets and identifying diagnostically significant patterns in ctDNA and other circulating biomarkers. Innovations such as machine learning-enhanced “fragmentomics” and tomographic phase imaging flow cytometry illustrate significant strides in non-invasive cancer diagnostics, offering enhanced detection capabilities with high accuracy.

Conclusion

The integration of ML in liquid biopsy represents a transformative step in the early detection and personalized treatment of GI cancers. Future research should focus on overcoming current limitations, such as the heterogeneity of tumor-derived genetic materials and the standardization of liquid biopsy protocols, to fully realize the potential of this technology in clinical settings.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329098240920043326
2024-10-31
2025-01-18
Loading full text...

Full text loading...

References

  1. Arnold M. Abnet C.C. Neale R.E. Vignat J. Giovannucci E.L. McGlynn K.A. Bray F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020 159 1 335 349.e15 10.1053/j.gastro.2020.02.068 32247694
    [Google Scholar]
  2. Lu L. Mullins C.S. Schafmayer C. Zeißig S. Linnebacher M. A global assessment of recent trends in gastrointestinal cancer and lifestyle‐associated risk factors. Cancer Commun. (Lond.) 2021 41 11 1137 1151 10.1002/cac2.12220 34563100
    [Google Scholar]
  3. Hossain M.S. Karuniawati H. Jairoun A.A. Urbi Z. Ooi D.J. John A. Lim Y.C. Kibria K.M.K. Mohiuddin A.K.M. Ming L.C. Goh K.W. Hadi M.A. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022 14 7 1732 10.3390/cancers14071732 35406504
    [Google Scholar]
  4. Pulumati A. Pulumati A. Dwarakanath B.S. Verma A. Papineni R.V.L. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep. 2023 6 2 e1764 10.1002/cnr2.1764 36607830
    [Google Scholar]
  5. Adhit K.K. Wanjari A. Menon S. Liquid Biopsy K.S. Liquid biopsy: An evolving paradigm for non-invasive disease diagnosis and monitoring in medicine. Cureus 2023 15 12 e50176 10.7759/cureus.50176
    [Google Scholar]
  6. Bai Y. Zhao H. Liquid biopsy in tumors: opportunities and challenges. Ann. Transl. Med. 2018 6 S1 S89 10.21037/atm.2018.11.31 30613664
    [Google Scholar]
  7. Soori M. Arezoo B. Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics 2023 10.1016/j.cogr.2023.04.001.
    [Google Scholar]
  8. Adashek J.J. Janku F. Kurzrock R. Signed in blood: Circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers (Basel) 2021 13 14 3600 10.3390/cancers13143600
    [Google Scholar]
  9. Krishnan S.K. Das P. Sudarshan K.L. Kotian C.M. Santhappan S. Vishwakarma M.B. Mathur P. Descriptive epidemiology of gastrointestinal cancers: Results from national cancer registry programme, India. Asian Pac J Cancer Prev 2022 23 2 409 418 10.31557/APJCP.2022.23.2.409
    [Google Scholar]
  10. Nadeem S. Dinesh K. Tasneef Z. Bhavna S. Rahul S. Kiran B. Dietary risk factors in gastrointestinal cancers: A case–control study in North India. J. Cancer Res. Ther. 2023 19 5 1385 1391 10.4103/jcrt.jcrt_1830_21 37787313
    [Google Scholar]
  11. Mysuru Shivanna L. Urooj A. A Review on Dietary and Non-Dietary Risk Factors Associated with Gastrointestinal Cancer. J. Gastrointest. Cancer 2016 47 3 247 254 10.1007/s12029‑016‑9845‑1 27270712
    [Google Scholar]
  12. Mathur P. Sathishkumar K. Chaturvedi M. Das P. Stephen S. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. Indian J. Med. Res. 2022 156 4 598 607 10.4103/ijmr.ijmr_1821_22 36510887
    [Google Scholar]
  13. Shaib W. El-Serag H.B. The epidemiology of pancreatic cancer in the United States: Changes below the surface. Aliment. Pharmacol. Ther. 2007 26 2 183 191 10.1111/j.1365‑2036.2007.03364.x 17593064
    [Google Scholar]
  14. American Cancer Society Cancer facts & figures 2020. 2020 Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html
  15. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  16. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  17. de Martel C. Ferlay J. Franceschi S. Vignat J. Bray F. Forman D. Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012 13 6 607 615 10.1016/S1470‑2045(12)70137‑7 22575588
    [Google Scholar]
  18. Rawla P. Sunkara T. Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019 14 2 89 103 10.5114/pg.2018.81072 31616522
    [Google Scholar]
  19. Arnold M. Sierra M.S. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017 66 4 683 691 10.1136/gutjnl‑2015‑310912 26818619
    [Google Scholar]
  20. Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015 65 2 87 108 10.3322/caac.21262 25651787
    [Google Scholar]
  21. Bertuccio P. Chatenoud L. Levi F. Praud D. Ferlay J. Negri E. Malvezzi M. La Vecchia C. Recent patterns in gastric cancer: A global overview. Int. J. Cancer 2009 125 3 666 673 10.1002/ijc.24290 19382179
    [Google Scholar]
  22. Petrick J.L. Braunlin M. Laversanne M. Valery P.C. Bray F. McGlynn K.A. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int. J. Cancer 2016 139 7 1534 1545 10.1002/ijc.30211 27244487
    [Google Scholar]
  23. Hirahata T. Ul Quraish R. Quraish A.U. Ul Quraish S. Naz M. Razzaq M.A. Liquid Biopsy: A distinctive approach to the diagnosis and prognosis of cancer. Cancer Inform 2022 21 10.1177/11769351221076062
    [Google Scholar]
  24. Lin B. Jiang J. Zhou X. Recent advances in design strategies of aptamer‐based liquid biopsy. J. Polym. Sci. 2024 62 13 2848 2870 10.1002/pol.20230445
    [Google Scholar]
  25. Satam H. Joshi K. Mangrolia U. Waghoo S. Zaidi G. Rawool S. Thakare R.P. Banday S. Mishra A.K. Das G. Next-generation sequencing technology: Current trends and advancements. Biology (Basel) 2023 12 7 997 10.3390/biology12070997
    [Google Scholar]
  26. Siravegna G. Marsoni S. Siena S. Bardelli A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017 14 9 531 548 10.1038/nrclinonc.2017.14 28252003
    [Google Scholar]
  27. Nikanjam M. Kato S. Kurzrock R. Liquid biopsy: Current technology and clinical applications. J Hematol Oncol 2022 15 1 131 10.1186/s13045‑022‑01351‑y
    [Google Scholar]
  28. Alix-Panabières C. Marchetti D. Lang J.E. Liquid biopsy: from concept to clinical application. Sci. Rep. 2023 13 1 21685 10.1038/s41598‑023‑48501‑x 38066040
    [Google Scholar]
  29. Crosby D. Delivering on the promise of early detection with liquid biopsies. Br. J. Cancer 2022 126 3 313 315 10.1038/s41416‑021‑01646‑w 35013576
    [Google Scholar]
  30. Sanz-Garcia E. Zhao E. Bratman S.V. Siu L.L. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: Current research, opportunities, and challenges. Sci. Adv. 2022 8 4 eabi8618 10.1126/sciadv.abi8618 35080978
    [Google Scholar]
  31. Febbo P.G. Allo M. Alme E.B. Cuyun Carter G. Dumanois R. Essig A. Kiernan E. Kubler C.B. Martin N. Popescu M.C. Recommendations for the equitable and widespread implementation of liquid biopsy for cancer care. JCO Precis Oncol 2024 8 e2300382 10.1200/PO.23.00382
    [Google Scholar]
  32. Casolino R. Beer P.A. Chakravarty D. Davis M.B. Malapelle U. Mazzarella L. Normanno N. Pauli C. Subbiah V. Turnbull C. Westphalen C.B. Biankin A.V. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J. Clin. 2024 74 3 264 285 10.3322/caac.21825 38174605
    [Google Scholar]
  33. Marusyk A. Polyak K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta Rev. Cancer 2010 1805 1 105 117 10.1016/j.bbcan.2009.11.002 19931353
    [Google Scholar]
  34. Kavan S. Kruse T.A. Vogsen M. Hildebrandt M.G. Thomassen M. Heterogeneity and tumor evolution reflected in liquid biopsy in metastatic breast cancer patients: a review. Cancer Metastasis Rev. 2022 41 2 433 446 10.1007/s10555‑022‑10023‑9 35286542
    [Google Scholar]
  35. White T. Algeri S. Estimating the lifetime risk of a false positive screening test result. PLoS One 2023 18 2 e0281153 10.1371/journal.pone.0281153
    [Google Scholar]
  36. Connors D. Allen J. Alvarez J.D. Boyle J. Cristofanilli M. Hiller C. Keating S. Kelloff G. Leiman L. McCormack R. Merino D. Morgan E. Pantel K. Rolfo C. Serrano M.J. Pia Sanzone A. Schlange T. Sigman C. Stewart M. International liquid biopsy standardization alliance white paper. Crit. Rev. Oncol. Hematol. 2020 156 103112 10.1016/j.critrevonc.2020.103112 33035734
    [Google Scholar]
  37. Ignatiadis M. Sledge G.W. Jeffrey S.S. Liquid biopsy enters the clinic — implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021 18 5 297 312 10.1038/s41571‑020‑00457‑x
    [Google Scholar]
  38. Clayton E.W. Evans B.J. Hazel J.W. Rothstein M.A. The law of genetic privacy: Applications, implications, and limitations. J Law Biosci 2019 6 1 1 36 10.1093/jlb/lsz007
    [Google Scholar]
  39. Eledkawy A. Hamza T. El-Metwally S. Precision cancer classification using liquid biopsy and advanced machine learning techniques. Sci. Rep. 2024 14 1 5841 10.1038/s41598‑024‑56419‑1 38462648
    [Google Scholar]
  40. Liu L. Chen X. Petinrin O.O. Zhang W. Rahaman S. Tang Z.R. Wong K.C. Machine learning protocols in early cancer detection based on liquid biopsy: A survey. Life (Basel) 2021 11 7 638 10.3390/life11070638
    [Google Scholar]
  41. Ko J. Baldassano S.N. Loh P.L. Kording K. Litt B. Issadore D. Machine learning to detect signatures of disease in liquid biopsies – a user’s guide. Lab Chip 2018 18 3 395 405 10.1039/C7LC00955K 29192299
    [Google Scholar]
  42. Das S. Dey M.K. Devireddy R. Gartia M.R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors (Basel) 2023 24 1 37 10.3390/s24010037
    [Google Scholar]
  43. Khandezamin Z. Naderan M. Rashti M.J. Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. J. Biomed. Inform. 2020 111 103591 10.1016/j.jbi.2020.103591 33039588
    [Google Scholar]
  44. Wang Y. Adam M.L. Zhao Y. Zheng W. Gao L. Yin Z. Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Lett. 2023 15 1 55 10.1007/s40820‑023‑01013‑9 36800133
    [Google Scholar]
  45. Menna G. Piaser Guerrato G. Bilgin L. Ceccarelli G.M. Olivi A. Della Pepa G.M. Is there a role for machine learning in liquid biopsy for brain tumors? A systematic review. Int J Mol Sci 2023 24 11 9723 10.3390/ijms24119723
    [Google Scholar]
  46. Wan N. Weinberg D. Liu T.Y. Niehaus K. Ariazi E.A. Delubac D. Kannan A. White B. Bailey M. Bertin M. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer 2019 19 1 832 10.1186/s12885‑019‑6003‑8
    [Google Scholar]
  47. Pirone D. Montella A. Sirico D.G. Mugnano M. Villone M.M. Bianco V. Miccio L. Porcelli A.M. Kurelac I. Capasso M. Iolascon A. Maffettone P.L. Memmolo P. Ferraro P. Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry. Sci. Rep. 2023 13 1 6042 10.1038/s41598‑023‑32110‑9 37055398
    [Google Scholar]
  48. Hsu Y.C. Huang S.M. Chang L.C. Chen Y.M. Chang Y.H. Lin J.W. Lin C.C. Chen C.W. Chen H.Y. Chiu H.M. Yu S.L. Screening of early-staged colorectal neoplasia by clonal hematopoiesis-based liquid biopsy and machine-learning. Am. J. Cancer Res. 2022 12 3 1088 1101 35411222
    [Google Scholar]
  49. Bie F. Wang Z. Li Y. Guo W. Hong Y. Han T. Lv F. Yang S. Li S. Li X. Nie P. Xu S. Zang R. Zhang M. Song P. Feng F. Duan J. Bai G. Li Y. Huai Q. Zhou B. Huang Y.S. Chen W. Tan F. Gao S. Multimodal analysis of cell-free DNA whole-methylome sequencing for cancer detection and localization. Nat. Commun. 2023 14 1 6042 10.1038/s41467‑023‑41774‑w 37758728
    [Google Scholar]
  50. Chen Y. Wang B. Zhao Y. Shao X. Wang M. Ma F. Yang L. Nie M. Jin P. Yao K. Song H. Lou S. Wang H. Yang T. Tian Y. Han P. Hu Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024 15 1 1657 10.1038/s41467‑024‑46043‑y 38395893
    [Google Scholar]
  51. Zhang B. Shi H. Wang H. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. J. Multidiscip. Healthc. 2023 16 1779 1791 10.2147/JMDH.S410301 37398894
    [Google Scholar]
  52. Ahsan M.M. Luna S.A. Siddique Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare (Basel) 2022 10 3 541 10.3390/healthcare10030541 35327018
    [Google Scholar]
  53. Lone S.N. Nisar S. Masoodi T. Singh M. Rizwan A. Hashem S. El-Rifai W. Bedognetti D. Batra S.K. Haris M. Bhat A.A. Macha M.A. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022 21 1 79 10.1186/s12943‑022‑01543‑7 35303879
    [Google Scholar]
  54. Effectiveness of shrinkage and variable selection methods for the prediction of complex human traits using data from distantly related individuals. Ann. Hum. Genet. 2018 82 2 127 10.1111/ahg.12243 29405268
    [Google Scholar]
  55. Godlewski A. Czajkowski M. Mojsak P. Pienkowski T. Gosk W. Lyson T. Mariak Z. Reszec J. Kondraciuk M. Kaminski K. Kretowski M. Moniuszko M. Kretowski A. Ciborowski M. A comparison of different machine-learning techniques for the selection of a panel of metabolites allowing early detection of brain tumors. Sci. Rep. 2023 13 1 11044 10.1038/s41598‑023‑38243‑1 37422554
    [Google Scholar]
  56. Conti C.B. Agnesi S. Scaravaglio M. Masseria P. Dinelli M.E. Oldani M. Uggeri F. Early gastric cancer: Update on prevention, diagnosis and treatment. Int J Environ Res Public Health 2023 20 3 2149 10.3390/ijerph20032149
    [Google Scholar]
  57. Sharma A. Lysenko A. Jia S. Boroevich K.A. Tsunoda T. Advances in AI and machine learning for predictive medicine. J Hum Genet 10.1038/s10038‑024‑01231‑y
    [Google Scholar]
  58. Zhao B. Kim Nguyen Vy. Xu M. Colacino J.A. Olivier Jolliet. Random survival forest for predicting the combined effects of multiple physiological risk factors on all-cause mortality. Sci. Rep. 2024 14 1
    [Google Scholar]
  59. Li L.W. Liu X. Shen M.L. Zhao M.J. Liu H. Development and validation of a random survival forest model for predicting long-term survival of early-stage young breast cancer patients based on the SEER database and an external validation cohort. Am. J. Cancer Res. 2024 14 4 1609 1621 10.62347/OJTY4008 38726282
    [Google Scholar]
  60. Papandrianos N. Papageorgiou E. Anagnostis A. Papageorgiou K. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS One 2020 15 8 e0237213 10.1371/journal.pone.0237213
    [Google Scholar]
  61. Schnabel J. Ultrasensitive liquid biopsy tech spots cancer earlier than standard methods. Cornell Chronicle 2024
    [Google Scholar]
  62. Crunkhorn S. Improving liquid biopsy for cancer detection. Nat. Rev. Drug Discov. 2024 23 3 174 174 38326470
    [Google Scholar]
  63. Wu C. Zhang J. Li H. Xu W. Zhang X. The potential of liquid biopsies in gastrointestinal cancer. Clin. Biochem. 2020 84 1 12 10.1016/j.clinbiochem.2020.06.007 32540214
    [Google Scholar]
  64. Zheng Y. Liu Y. Yang J. Yu Y. Dong L. Zhang R. Tian S. Ren L. Hou W. Zhu F. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat Biotechnol 2024 42 7 1133 1149 10.1038/s41587‑023‑01934‑1
    [Google Scholar]
  65. Shao Q. Lundgren M. Lynch J. Jiang M. Mir M. Bischof J. Nelson M. Tumor therapeutic response monitored by telemetric temperature sensing, a preclinical study on immunotherapy and chemotherapy. Sci. Rep. 2023 13 1 7727 10.1038/s41598‑023‑34919‑w 37173516
    [Google Scholar]
  66. Peneder P. Stütz A.M. Surdez D. Krumbholz M. Semper S. Chicard M. Sheffield N.C. Pierron G. Lapouble E. Tötzl M. Ergüner B. Barreca D. Rendeiro A.F. Agaimy A. Boztug H. Engstler G. Dworzak M. Bernkopf M. Taschner-Mandl S. Ambros I.M. Myklebost O. Marec-Bérard P. Burchill S.A. Brennan B. Strauss S.J. Whelan J. Schleiermacher G. Schaefer C. Dirksen U. Hutter C. Boye K. Ambros P.F. Delattre O. Metzler M. Bock C. Tomazou E.M. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat. Commun. 2021 12 1 3230 10.1038/s41467‑021‑23445‑w 34050156
    [Google Scholar]
  67. Cisneros-Villanueva M. Hidalgo-Pérez L. Rios-Romero M. Cedro-Tanda A. Ruiz-Villavicencio C.A. Page K. Hastings R. Fernandez-Garcia D. Allsopp R. Fonseca-Montaño M.A. Jimenez-Morales S. Padilla-Palma V. Shaw J.A. Hidalgo-Miranda A. Cell-free DNA analysis in current cancer clinical trials: a review. Br. J. Cancer 2022 126 3 391 400 10.1038/s41416‑021‑01696‑0 35027672
    [Google Scholar]
  68. Zhang B Shi H Wang H. Learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach. J Multidiscip Healthc 2023 16 1779 1791 10.2147/JMDH.S410301 37398894
    [Google Scholar]
  69. Azizi S. Culp L. Freyberg J. Mustafa B. Baur S. Kornblith S. Chen T. Tomasev N. Mitrović J. Strachan P. Mahdavi S.S. Wulczyn E. Babenko B. Walker M. Loh A. Chen P.H.C. Liu Y. Bavishi P. McKinney S.M. Winkens J. Roy A.G. Beaver Z. Ryan F. Krogue J. Etemadi M. Telang U. Liu Y. Peng L. Corrado G.S. Webster D.R. Fleet D. Hinton G. Houlsby N. Karthikesalingam A. Norouzi M. Natarajan V. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 2023 7 6 756 779 10.1038/s41551‑023‑01049‑7 37291435
    [Google Scholar]
  70. Vesper H.W. Myers G.L. Miller W.G. Current practices and challenges in the standardization and harmonization of clinical laboratory tests. Am J Clin Nutr 2016 104 907S 12S 10.3945/ajcn.115.110387
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329098240920043326
Loading
/content/journals/ccdt/10.2174/0115680096329098240920043326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test