Skip to content
2000
image of A Potential Role for Oridonin in Cancer Control: Mechanisms of Autophagy and Apoptosis

Abstract

Cancer is one of the leading causes of mortality and morbidity worldwide. It is characterized by unmanaged cell proliferation and growth, leading to tumour formation with the potential to metastasize to various organs of the human body. Currently, several common therapeutic approaches exist to treat malignancies, including chemotherapy, surgery, and radiotherapy, which can be used to prevent the progression of malignancies. However, these therapeutic approaches often face challenges due to their cytotoxic impacts and various side effects. Ergo is currently researching a new treatment that effectively reduces cancer progression with minimal side effects. Emerging evidence suggests that harnessing herbal sources, which are both accessible and safe, can be useful in improving various disorders, including cancer. Oridonin, a diterpenoid isolated from the traditional Chinese medicinal herb Rabdosia rubescens, has shown significant potential in cancer therapy. Moreover, numerous pharmacological and biological capacities have been attributed to this naturally active compound, such as anti-oxidative, anti-inflammatory, anti-bacterial, and anti-viral influences. This review summarizes the current knowledge on oridonin's mechanisms of action, particularly its effects on autophagy and apoptosis. While apoptosis is a well-established pathway for eliminating cancer cells through DNA fragmentation, autophagy plays a complex role, acting as both a cytoprotective and cell death mechanism depending on the context. We provide a comprehensive evaluation of the relevant studies, highlighting oridonin's potential in cancer control and identifying areas for further research.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096320596240913034833
2024-10-29
2025-01-18
Loading full text...

Full text loading...

References

  1. Taha S. Mohamed W.R. Elhemely M.A. El-Gendy A.O. Mohamed T. Tunable femtosecond laser suppresses the proliferation of breast cancer in vitro. J. Photochem. Photobiol. B 2023 240 112665 10.1016/j.jphotobiol.2023.112665 36736031
    [Google Scholar]
  2. Bernstein E. Lev-Ari S. Shapira S. Leshno A. Sommer U. Al-Shamsi H. Shaked M. Segal O. Galazan L. Hay-Levy M. Sror M. Harlap-Gat A. Peer M. Moshkowitz M. Wolf I. Liberman E. Shenberg G. Gur E. Elran H. Melinger G. Mashiah J. Isakov O. Zrifin E. Gluck N. Dekel R. Kleinman S. Aviram G. Blachar A. Kessler A. Golan O. Geva R. Yossepowitch O. Neugut A.I. Arber N. Data from a one-stop-shop comprehensive cancer screening center. J. Clin. Oncol. 2023 41 14 2503 2510 10.1200/JCO.22.00938 36669135
    [Google Scholar]
  3. Cheng Z. Li M. Dey R. Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 2021 14 1 85 10.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  4. de Martel C. Georges D. Bray F. Ferlay J. Clifford G.M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 2020 8 2 e180 e190 10.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  5. Cao M. Li H. Sun D. He S. Yan X. Yang F. Zhang S. Xia C. Lei L. Peng J. Chen W. Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol. Med. 2022 19 8 1121 1138 10.20892/j.issn.2095‑3941.2022.0231 36069534
    [Google Scholar]
  6. Hao Q. Vadgama J.V. Wang P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal. 2020 18 1 82 10.1186/s12964‑020‑00589‑8 32471499
    [Google Scholar]
  7. Fund W. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018
    [Google Scholar]
  8. Praud D. Rota M. Rehm J. Shield K. Zatoński W. Hashibe M. La Vecchia C. Boffetta P. Cancer incidence and mortality attributable to alcohol consumption. Int. J. Cancer 2016 138 6 1380 1387 10.1002/ijc.29890 26455822
    [Google Scholar]
  9. Xia C. Zheng R. Zeng H. Zhou M. Wang L. Zhang S. Zou X. Sun K. Yang Z. Li H. Parascandola M. Islami F. Chen W. Provincial-level cancer burden attributable to active and second-hand smoking in China. Tob. Control 2019 28 6 669 675 10.1136/tobaccocontrol‑2018‑054583 30322976
    [Google Scholar]
  10. Karpuz M. Silindir-Gunay M. Ozer A.Y. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother. Radiopharm. 2018 33 2 39 51 10.1089/cbr.2017.2378 29634415
    [Google Scholar]
  11. Lei Y.Y. Wang Y.Q. Hao J.G. Liu M.W. Pancreatic hepatoid carcinoma: A case report and literature review. World Academy of Sciences Journal 2021 3 5 49 10.3892/wasj.2021.120
    [Google Scholar]
  12. Rezaei-Tazangi F. Roghani-Shahraki H. Khorsand Ghaffari M. Abolhasani Zadeh F. Boostan A. ArefNezhad, R.; Motedayyen, H. The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence. Pharmaceuticals (Basel) 2021 14 12 1315 10.3390/ph14121315 34959716
    [Google Scholar]
  13. Hosseini A. Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J. Phytomed. 2015 5 2 84 97 25949949
    [Google Scholar]
  14. Wang Y. Lv H. Dai C. Wang X. Yin Y. Chen Z. Oridonin Dose-Dependently Modulates the Cell Senescence and Apoptosis of Gastric Cancer Cells. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/5023536 34795783
    [Google Scholar]
  15. Li G.Q. Gao S.X. Wang F.H. Kang L. Tang Z.Y. Ma X.D. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed. Pharmacother. 2023 165 115019 10.1016/j.biopha.2023.115019 37329709
    [Google Scholar]
  16. Jiang J.H. Pi J. Jin H. Cai J.Y. Oridonin‐induced mitochondria‐dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways. J. Cell. Biochem. 2019 120 3 3736 3746 10.1002/jcb.27654 30229997
    [Google Scholar]
  17. Bao R. Shu Y. Wu X. Weng H. Ding Q. Cao Y. Li M. Mu J. Wu W. Ding Q. Tan Z. Liu T. Jiang L. Hu Y. Gu J. Liu Y. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer 2014 14 1 217 10.1186/1471‑2407‑14‑217 24655726
    [Google Scholar]
  18. Bu H.Q. Liu D.L. Wei W.T. Chen L. Huang H. Li Y. Cui J.H. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 MAPK. Oncol. Rep. 2014 31 2 975 982 10.3892/or.2013.2888 24297112
    [Google Scholar]
  19. Li S. Shi D. Zhang L. Yang F. Cheng G. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl 2. Exp. Ther. Med. 2018 16 6 4859 4864 10.3892/etm.2018.6803 30546402
    [Google Scholar]
  20. Zhou J. Li Y. Shi X. Hao S. Zhang F. Guo Z. Gao Y. Guo H. Liu L. Oridonin inhibits tumor angiogenesis and induces vessel normalization in experimental colon cancer. J. Cancer 2021 12 11 3257 3264 10.7150/jca.55929 33976735
    [Google Scholar]
  21. Shi M. Lu X.J. Zhang J. Diao H. Li G. Xu L. Wang T. Wei J. Meng W. Ma J.L. Yu H. Wang Y.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget 2016 7 16 22623 22631 10.18632/oncotarget.8033 26980707
    [Google Scholar]
  22. Liu W. Wang X. Wang L. Mei Y. Yun Y. Yao X. Chen Q. Zhou J. Kou B. Oridonin represses epithelial-mesenchymal transition and angiogenesis of thyroid cancer via downregulating JAK2/STAT3 signaling. Int. J. Med. Sci. 2022 19 6 965 974 10.7150/ijms.70733 35813296
    [Google Scholar]
  23. Cao S. Huang Y. Zhang Q. Lu F. Donkor P.O. Zhu Y. Qiu F. Kang N. Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma. Apoptosis 2019 24 1-2 33 45 10.1007/s10495‑018‑1497‑0 30430397
    [Google Scholar]
  24. Klionsky D.J. Petroni G. Amaravadi R.K. Baehrecke E.H. Ballabio A. Boya P. Bravo-San Pedro J.M. Cadwell K. Cecconi F. Choi A.M.K. Choi M.E. Chu C.T. Codogno P. Colombo M.I. Cuervo A.M. Deretic V. Dikic I. Elazar Z. Eskelinen E.L. Fimia G.M. Gewirtz D.A. Green D.R. Hansen M. Jäättelä M. Johansen T. Juhász G. Karantza V. Kraft C. Kroemer G. Ktistakis N.T. Kumar S. Lopez-Otin C. Macleod K.F. Madeo F. Martinez J. Meléndez A. Mizushima N. Münz C. Penninger J.M. Perera R.M. Piacentini M. Reggiori F. Rubinsztein D.C. Ryan K.M. Sadoshima J. Santambrogio L. Scorrano L. Simon H.U. Simon A.K. Simonsen A. Stolz A. Tavernarakis N. Tooze S.A. Yoshimori T. Yuan J. Yue Z. Zhong Q. Galluzzi L. Pietrocola F. Autophagy in major human diseases. EMBO J. 2021 40 19 e108863 10.15252/embj.2021108863 34459017
    [Google Scholar]
  25. Li X. He S. Ma B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020 19 1 12 10.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  26. Xi H. Wang S. Wang B. Hong X. Liu X. Li M. Shen R. Dong Q. The role of interaction between autophagy and apoptosis in tumorigenesis.(Review) Oncol. Rep. 2022 48 6 208 10.3892/or.2022.8423 36222296
    [Google Scholar]
  27. Ojha R. Bhattacharyya S. Singh S.K. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. Biores. Open Access 2015 4 1 97 108 10.1089/biores.2014.0035 26309786
    [Google Scholar]
  28. Smith A.G. Macleod K.F. Autophagy, cancer stem cells and drug resistance. J. Pathol. 2019 247 5 708 718 10.1002/path.5222 30570140
    [Google Scholar]
  29. Bartolák-Suki E. Imsirovic J. Nishibori Y. Krishnan R. Suki B. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int. J. Mol. Sci. 2017 18 8 1812 10.3390/ijms18081812 28825689
    [Google Scholar]
  30. Talukdar S. Pradhan A.K. Bhoopathi P. Shen X.N. August L.A. Windle J.J. Sarkar D. Furnari F.B. Cavenee W.K. Das S.K. Emdad L. Fisher P.B. MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proc. Natl. Acad. Sci. USA 2018 115 22 5768 5773 10.1073/pnas.1721650115 29760085
    [Google Scholar]
  31. Chen J.L. David J. Cook-Spaeth D. Casey S. Cohen D. Selvendiran K. Bekaii-Saab T. Hays J.L. Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. Mol. Cancer Res. 2017 15 1 26 34 10.1158/1541‑7786.MCR‑16‑0200‑T 27807188
    [Google Scholar]
  32. Wileman T. Autophagy as a defence against intracellular pathogens. Essays Biochem. 2013 55 153 163 10.1042/bse0550153 24070478
    [Google Scholar]
  33. Levine B. Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell 2019 176 1-2 11 42 10.1016/j.cell.2018.09.048 30633901
    [Google Scholar]
  34. Zhou W.H. Tang F. Xu J. Wu X. Yang S.B. Feng Z.Y. Ding Y.G. Wan X.B. Guan Z. Li H.G. Lin D.J. Shao C.K. Liu Q. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy 2012 8 3 389 400 10.4161/auto.18641 22240664
    [Google Scholar]
  35. Liu K-Y. Mo Y. Sun Y-Y. Autophagy and inflammation in ischemic stroke. Neural Regen. Res. 2020 15 8 1388 1396 10.4103/1673‑5374.274331 31997797
    [Google Scholar]
  36. Zhou F. Gao H. Shang L. Li J. Zhang M. Sun Y. siRNA targeting HIF-1α inhibits the proliferation and invasion of oral squamous cell carcinoma cells via the mTOR/S6K1/autophagy signaling pathway. Mol. Med. Rep. 2018 18 1415 1421
    [Google Scholar]
  37. Yilmaz I. Akalan H. Sirin Yasar D. Karaarslan N. Özbek H. Ateş O. Is favipiravir a potential therapeutic agent in the treatment of intervertebral disc degeneration by suppressing autophagy and apoptosis? Turk Neurosurg. 2022 32 4 680 687 10.5137/1019‑5149.JTN.38252‑22.3 35652184
    [Google Scholar]
  38. Liu X. Xu J. Zhou J. Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis. 2021 8 4 448 462 10.1016/j.gendis.2020.06.010 34179309
    [Google Scholar]
  39. Yao J. Liu L. Sun Q. Shen X. Direct cellular targets and anticancer mechanisms of the natural product oridonin. MedComm–Future Medicine 2023 2 1
    [Google Scholar]
  40. Wang T. Xu Z. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease. Comb. Chem. High Throughput Screen. 2023 26 11 1929 1944 10.2174/1386207326666230119101011 36655533
    [Google Scholar]
  41. Lin S. Dai S. Lin J. Liang X. Wang W. Huang, W Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation. Cardiovasc. Ther. 2022 2022 3167959
    [Google Scholar]
  42. Yuan Z. Ouyang P. Gu K. Rehman T. Zhang T. Yin Z. Fu H. Lin J. He C. Shu G. Liang X. Yuan Z. Song X. Li L. Zou Y. Yin L. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA). Pharm. Biol. 2019 57 1 710 716 10.1080/13880209.2019.1674342 31622118
    [Google Scholar]
  43. Zhong B. Peng W. Du S. Chen B. Feng Y. Hu X. Lai Q. Liu S. Zhou Z.W. Fang P. Wu Y. Gao F. Zhou H. Sun L. Oridonin Inhibits SARS‐CoV‐2 by Targeting Its 3C‐Like Protease. Small Sci. 2022 2 6 2100124 10.1002/smsc.202100124 35600064
    [Google Scholar]
  44. Antimicrobial activity of oridonin Food Sci. Technol. (Campinas) 2023
    [Google Scholar]
  45. Sun Y. Jiang X. Lu Y. Zhu J. Yu L. Ma B. Zhang Q. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma. Chem. Biol. Interact. 2018 296 57 64 10.1016/j.cbi.2018.09.013 30243739
    [Google Scholar]
  46. Che X. Zhan J. Zhao F. Zhong Z. Chen M. Han R. Wang Y. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways. BioMed Res. Int. 2021 2021 1 9 10.1155/2021/4340950 34285910
    [Google Scholar]
  47. Duan D. Wang X. Feng X. Pan D. Wang L. Wang Y. Oridonin Induces Oxidative Stress-mediated Cancer Cells Apoptosis via Targeting Thioredoxin Reductase. Curr. Pharm. Biotechnol. 2022 23 14 1647 1657 10.2174/1389201023666211217151955 34923938
    [Google Scholar]
  48. Lu Y. Sun Y. Zhu J. Yu L. Jiang X. Zhang J. Dong X. Ma B. Zhang Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway. Cell Death Dis. 2018 9 1 15 10.1038/s41419‑017‑0031‑6 29323103
    [Google Scholar]
  49. Xia S. Zhang X. Li C. Guan H. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling. Saudi Pharm. J. 2017 25 4 638 643 10.1016/j.jsps.2017.04.037 28579904
    [Google Scholar]
  50. Yang J. Ren X. Zhang L. Li Y. Cheng B. Xia J. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed. Pharmacother. 2018 100 226 232 10.1016/j.biopha.2018.02.011 29432993
    [Google Scholar]
  51. Wang Y.Y. Lv Y.F. Lu L. Cai L. Oridonin inhibits mTOR signaling and the growth of lung cancer tumors. Anticancer Drugs 2014 25 10 1192 1200 10.1097/CAD.0000000000000154 25075795
    [Google Scholar]
  52. Gu H. Gwon M.G. Kim J.H. Leem J. Lee S.J. Oridonin Attenuates Cisplatin-Induced Acute Kidney Injury via Inhibiting Oxidative Stress, Apoptosis, and Inflammation in Mice. BioMed Res. Int. 2022 2022 1 10 10.1155/2022/3002962 35469348
    [Google Scholar]
  53. Huang J.H. Lan C.C. Hsu Y.T. Tsai C.L. Tzeng I.S. Wang P. Kuo C.Y. Hsieh P.C. Oridonin attenuates lipopolysaccharide-induced ROS accumulation and inflammation in HK-2 cells. Evid. Based Complement. Alternat. Med. 2020 2020 1 9724520 10.1155/2020/9724520 32184902
    [Google Scholar]
  54. He H. Jiang H. Chen Y. Ye J. Wang A. Wang C. Liu Q. Liang G. Deng X. Jiang W. Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018 9 1 2550 10.1038/s41467‑018‑04947‑6 29959312
    [Google Scholar]
  55. Ma Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol. Rev. 2023 75 3 487 520 10.1124/pharmrev.122.000629 36669831
    [Google Scholar]
  56. Shah A. Novel Coronavirus-Induced NLRP3 Inflammasome Activation: A Potential Drug Target in the Treatment of COVID-19. Front. Immunol. 2020 11 1021 10.3389/fimmu.2020.01021 32574259
    [Google Scholar]
  57. Ratajczak M.Z. Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 2020 34 7 1726 1729 10.1038/s41375‑020‑0887‑9 32483300
    [Google Scholar]
  58. Zhao X.J. Zhu H.Y. Wang X.L. Lu X.W. Pan C.L. Xu L. Liu X. Xu N. Zhang Z.Y. Oridonin ameliorates traumatic brain injury-induced neurological damage by improving mitochondrial function and antioxidant capacity and suppressing neuroinflammation through the Nrf2 pathway. J. Neurotrauma 2022 39 7-8 530 543 10.1089/neu.2021.0466 35102762
    [Google Scholar]
  59. Zhang J. Zhou Y. Sun Y. Yan H. Han W. Wang X. Wang K. Wei B. Xu X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur. J. Pharmacol. 2019 861 172587 10.1016/j.ejphar.2019.172587 31377155
    [Google Scholar]
  60. Wang X. Gao M. Wang Z. Cui W. Zhang J. Zhang W. Xia Y. Wei B. Tang Y. Xu X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. Sci. Total Environ. 2021 770 145301 10.1016/j.scitotenv.2021.145301 33515877
    [Google Scholar]
  61. Liu D.L. Bu H.Q. Wang W.L. Luo H. Cheng B.N. Oridonin enhances the anti-tumor activity of gemcitabine towards pancreatic cancer by stimulating Bax- and Smac-dependent apoptosis. Transl. Cancer Res. 2020 9 7 4148 4161 10.21037/tcr‑19‑3000 35117784
    [Google Scholar]
  62. Lou S. Xu J. Wang B. Li S. Ren J. Hu Z. Xu B. Luo F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim. Biophys. Sin. (Shanghai) 2019 51 8 814 825 10.1093/abbs/gmz071 31314060
    [Google Scholar]
  63. Zhao X. Zhang Q. Wang Y. Li S. Yu X. Wang B. Wang X. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling. Ann. Transl. Med. 2021 9 13 1084 10.21037/atm‑21‑2630 34422996
    [Google Scholar]
  64. Qi X. Zhang D. Xu X. Feng F. Ren G. Chu Q. Zhang Q. Tian K. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. Int. J. Nanomedicine 2012 7 1793 1804 22619528
    [Google Scholar]
  65. Taha M.M.E. Mobarki A.A. Madkhali A.M. Farasani A. Shaheen E.S. Hamali H.A. Hyphaene thebaica mart. extract attenuates oxidative stress and Bax-and Bcl-2-mediated apoptosis in ethanol-induced gastric ulcers in rats. Pharmacogn. Mag. 2022 18 80 969 975
    [Google Scholar]
  66. Galluzzi L. Myint M. Cell death and senescence. J. Transl. Med. 2023 21 1 425 10.1186/s12967‑023‑04297‑y 37386590
    [Google Scholar]
  67. Li Y. Wang Y. Wang S. Gao Y. Zhang X. Lu C. Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med. Oncol. 2015 32 1 365 10.1007/s12032‑014‑0365‑1 25491140
    [Google Scholar]
  68. Li C. Wang Q. Shen S. Wei X. Li G. Oridonin inhibits VEGF A associated angiogenesis and epithelial mesenchymal transition of breast cancer in-vitro and in-vivo. Oncol. Lett. 2018 16 2 2289 2298 10.3892/ol.2018.8943 30008931
    [Google Scholar]
  69. Cui Q. Tashiro S. Onodera S. Minami M. Ikejima T. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol. Pharm. Bull. 2007 30 5 859 864 10.1248/bpb.30.859 17473426
    [Google Scholar]
  70. Wang S. Zhong Z. Wan J. Tan W. Wu G. Chen M. Wang Y. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am. J. Chin. Med. 2013 41 1 177 196 10.1142/S0192415X13500134 23336515
    [Google Scholar]
  71. Abou-Elhamd K-E.A. Fas and cancer. Clin. Med. Insights Ear Nose Throat 2010 1 5
    [Google Scholar]
  72. Pahl H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999 18 49 6853 6866 10.1038/sj.onc.1203239 10602461
    [Google Scholar]
  73. Dutta J. Fan Y. Gupta N. Fan G. Gélinas C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene 2006 25 51 6800 6816 10.1038/sj.onc.1209938 17072329
    [Google Scholar]
  74. Gurram P.C. Satarker S. Nassar A. Mudgal J. Nampoothiri M. Virtual structure-based docking and molecular dynamics of FDA-approved drugs for the identification of potential IKKB inhibitors possessing dopaminergic activity in Alzheimer’s disease. Chem. Zvesti 2023 77 4 1971 1988 10.1007/s11696‑022‑02598‑y
    [Google Scholar]
  75. Li X. Li X. Wang J. Ye Z. Li J.C. Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int. J. Biol. Sci. 2012 8 6 901 912 10.7150/ijbs.4554 22745580
    [Google Scholar]
  76. Lu J. Chen X. Qu S. Yao B. Xu Y. Wu J. Jin Y. Ma C. Oridonin induces G2/M cell cycle arrest and apoptosis via the PI3K/Akt signaling pathway in hormone-independent prostate cancer cells. Oncol. Lett. 2017 13 4 2838 2846 10.3892/ol.2017.5751 28454475
    [Google Scholar]
  77. Cheng X. Sun Y. Highkin M. Vemalapally N. Jin X. Zhou B. Prior J.L. Tipton A.R. Li S. Iliuk A. Achilefu S. Hagemann I.S. Edwards J.R. Bose R. Breast cancer mutations HER2 V777L and PIK3CA H1047R activate the p21-CDK4/6-Cyclin D1 axis driving tumorigenesis and drug resistance. Cancer Res. 2023 83 17 2839 2857 10.1158/0008‑5472.CAN‑22‑3558
    [Google Scholar]
  78. Yu J. Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun. 2005 331 3 851 858 10.1016/j.bbrc.2005.03.189 15865941
    [Google Scholar]
  79. Feroz W. Sheikh A.M.A. Exploring the multiple roles of guardian of the genome: P53. Egypt. J. Med. Hum. Genet. 2020 21 1 49 10.1186/s43042‑020‑00089‑x
    [Google Scholar]
  80. Yao Z. Xie F. Li M. Liang Z. Xu W. Yang J. Liu C. Li H. Zhou H. Qu L.H. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis. 2017 8 2 e2633 10.1038/cddis.2017.35 28230866
    [Google Scholar]
  81. Wu Q.X. Yuan S.X. Ren C.M. Yu Y. Sun W.J. He B.C. Wu K. Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells. Oncol. Rep. 2016 35 6 3341 3348 10.3892/or.2016.4735 27108927
    [Google Scholar]
  82. Oronsky B. Oronsky N. Fanger G. Parker C. Caroen S. Lybeck M. Scicinski J. Follow the ATP: tumor energy production: a perspective. Anticancer. Agents Med. Chem. 2014 14 9 1187 1198 10.2174/1871520614666140804224637 25102360
    [Google Scholar]
  83. Gao F.H. Liu F. Wei W. Liu L.B. Xu M.H. Guo Z.Y. Li W. Jiang B. Wu Y.L. Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int. J. Mol. Med. 2012 29 4 649 655 10.3892/ijmm.2012.895 22294162
    [Google Scholar]
  84. Bu H. Liu D. Zhang G. Chen L. Song Z. AMPK/mTOR/ULK1 axis-mediated pathway participates in apoptosis and autophagy induction by oridonin in colon cancer DLD-1 cells. OncoTargets Ther. 2020 13 8533 8545 10.2147/OTT.S262022 32904616
    [Google Scholar]
  85. Alers S. Löffler A.S. Wesselborg S. Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 2012 32 1 2 11 10.1128/MCB.06159‑11 22025673
    [Google Scholar]
  86. Mao K. Klionsky D.J. AMPK activates autophagy by phosphorylating ULK1. Circ. Res. 2011 108 7 787 788 10.1161/RES.0b013e3182194c29 21454792
    [Google Scholar]
  87. Zhang D. Zhou Q. Huang D. He L. Zhang H. Hu B. Peng H. Ren D. ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2019 513 3 594 601 10.1016/j.bbrc.2019.04.011 30981511
    [Google Scholar]
  88. Kwan H.Y. Yang Z. Fong W.F. Hu Y.M. Yu Z.L. Hsiao W.L.W. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J. Gastroenterol. 2013 48 2 182 192 10.1007/s00535‑012‑0612‑1 22722903
    [Google Scholar]
  89. Ren C.M. Li Y. Chen Q.Z. Zeng Y.H. Shao Y. Wu Q.X. Yuan S.X. Yang J.Q. Yu Y. Wu K. He B.C. Sun W.J. Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK. Oncol. Rep. 2016 35 5 2691 2698 10.3892/or.2016.4654 26986967
    [Google Scholar]
  90. Bi E. Liu D. Li Y. Mao X. Wang A. Wang J. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function. Braz. J. Med. Biol. Res. 2018 51 12 e7599 10.1590/1414‑431x20187599 30462771
    [Google Scholar]
  91. He X.J. Wang H.J. Xia Y.J. Ye Z.Y. Tao H.Q. [Empirical study of oridonin-induced gastric cancer cells MKN45 apoptosis Zhonghua Wei Chang Wai Ke Za Zhi 2009 12 6 607 610 19921575
    [Google Scholar]
  92. Sun K.W. Ma Y-Y. Guan T-P. Xia Y-J. Shao C-M. Chen L-G. Ren Y.J. Yao H.B. Yang Q. He X.J. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J. Gastroenterol. 2012 18 48 7166 7174 10.3748/wjg.v18.i48.7166 23326121
    [Google Scholar]
  93. Gao S. Tan H. Zhu N. Gao H. Lv C. Gang J. Ji Y. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells. Int. J. Oncol. 2016 48 6 2453 2460 10.3892/ijo.2016.3479 27082253
    [Google Scholar]
  94. Pinkoski M.J. Waterhouse N.J. Heibein J.A. Wolf B.B. Kuwana T. Goldstein J.C. Newmeyer D.D. Bleackley R.C. Green D.R. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 2001 276 15 12060 12067 10.1074/jbc.M009038200 11278459
    [Google Scholar]
  95. Park H. Jeong Y.J. Han N.K. Kim J.S. Lee H.J. Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells. International. Int. J. Mol. Sci. 2018 19 8 2378 10.3390/ijms19082378 30104472
    [Google Scholar]
  96. Yang H. Gao Y. Fan X. Liu X. Peng L. Ci X. Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-dependent autophagosome accumulation in A549 cells. Front. Oncol. 2019 9 769 10.3389/fonc.2019.00769 31475112
    [Google Scholar]
  97. Zhang X. Xing M. Ma Y. Zhang Z. Qiu C. Wang X. Zhao Z. Ji Z. Zhang J.Y. Oridonin induces apoptosis in esophageal squamous cell carcinoma by inhibiting cytoskeletal protein LASP1 and PDLIM1. Molecules 2023 28 2 805 10.3390/molecules28020805 36677861
    [Google Scholar]
  98. Li J. Wu Y. Wang D. Zou L. Fu C. Zhang J. Leung G.P.H. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects. Pharmacol. Res. 2019 146 104313 10.1016/j.phrs.2019.104313 31202781
    [Google Scholar]
  99. Zheng W. Zhou C.Y. Zhu X.Q. Wang X.J. Li Z.Y. Chen X.C. Chen F. Che X.Y. Xie X. Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed. Pharmacother. 2018 106 175 182 10.1016/j.biopha.2018.06.111 29958141
    [Google Scholar]
  100. Yang I.H. Shin J.A. Lee K.E. Kim J. Cho N.P. Cho S.D. Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2 AX. Eur. J. Oral Sci. 2017 125 6 438 443 10.1111/eos.12387 29083074
    [Google Scholar]
  101. Gui Z. Luo F. Yang Y. Shen C. Li S. Xu J. Oridonin inhibition and miR-200b-3p/ZEB1 axis in human pancreatic cancer. Int. J. Oncol. 2017 50 1 111 120 10.3892/ijo.2016.3772 27878247
    [Google Scholar]
  102. Liu Q.Q. Chen K. Ye Q. Jiang X.H. Sun Y.W. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway. Cancer Cell Int. 2016 16 1 57 10.1186/s12935‑016‑0336‑z 27453691
    [Google Scholar]
  103. Qing K. Jin Z. Fu W. Wang W. Liu Z. Li X. Xu Z. Li J. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma. J. Hematol. Oncol. 2016 9 1 72 10.1186/s13045‑016‑0303‑0 27554093
    [Google Scholar]
  104. Pi J. Cai H. Jin H. Yang F. Jiang J. Wu A. Zhu H. Liu J. Su X. Yang P. Cai J. Qualitative and quantitative analysis of ROS-mediated oridonin-induced oesophageal cancer KYSE-150 cell apoptosis by atomic force microscopy. PLoS One 2015 10 10 e0140935 10.1371/journal.pone.0140935 26496199
    [Google Scholar]
  105. Ma S. Tan W. Du B. Liu W. Li W. Che D. Zhang G. Oridonin effectively reverses cisplatin drug resistance in human ovarian cancer cells via induction of cell apoptosis and inhibition of matrix metalloproteinase expression. Mol. Med. Rep. 2016 13 4 3342 3348 10.3892/mmr.2016.4897 26935490
    [Google Scholar]
  106. Xia R. Chen S.X. Qin Q. Chen Y. Zhang W.W. Zhu R.R. Deng A.M. Oridonin suppresses proliferation of human ovarian cancer cells via blockage of mTOR signaling. Asian Pac. J. Cancer Prev. 2016 17 2 667 671 10.7314/APJCP.2016.17.2.667 26925661
    [Google Scholar]
  107. Kang N. Zhang J.H. Qiu F. Tashiro S. Onodera S. Ikejima T. Inhibition of EGFR signaling augments oridonin-induced apoptosis in human laryngeal cancer cells via enhancing oxidative stress coincident with activation of both the intrinsic and extrinsic apoptotic pathways. Cancer Lett. 2010 294 2 147 158 10.1016/j.canlet.2010.01.032 20202741
    [Google Scholar]
  108. Ming M. Sun F.Y. Zhang W.T. Liu J.K. Therapeutic effect of oridonin on mice with prostate cancer. Asian Pac. J. Trop. Med. 2016 9 2 184 187 10.1016/j.apjtm.2016.01.007 26919953
    [Google Scholar]
  109. Kazantseva L. Becerra J. Santos-Ruiz L. Oridonin enhances antitumor effects of doxorubicin in human osteosarcoma cells. Pharmacol. Rep. 2022 74 1 248 256 10.1007/s43440‑021‑00324‑1 34427908
    [Google Scholar]
  110. Jin S. Shen J. Wang J. Huang G. Zhou J.G. Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells. Cancer Biol. Ther. 2007 6 2 261 268 10.4161/cbt.6.2.3621 17218775
    [Google Scholar]
  111. Cheng Y. Qiu F. Ikejima T. Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells. Autophagy 2009 5 3 430 431 10.4161/auto.5.3.7896 19202353
    [Google Scholar]
  112. Gao S. Tan H. Li D. Oridonin suppresses gastric cancer SGC ‐7901 cell proliferation by targeting the TNF ‐alpha/androgen receptor/TGF ‐beta signalling pathway axis. J. Cell. Mol. Med. 2023 27 18 2661 2674 10.1111/jcmm.17841
    [Google Scholar]
  113. He Z. Xiao X. Li S. Guo Y. Huang Q. Shi X. Wang X. Liu Y. Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells. Oncol. Lett. 2017 14 2 2499 2504 10.3892/ol.2017.6421 28781688
    [Google Scholar]
  114. Huang H. Weng H. Dong B. Zhao P. Zhou H. Qu L. Oridonin triggers chaperone-mediated proteasomal degradation of BCR-ABL in leukemia. Sci. Rep. 2017 7 1 41525 10.1038/srep41525 28128329
    [Google Scholar]
  115. Xiao X. He Z. Cao W. Cai F. Zhang L. Huang Q. Fan C. Duan C. Wang X. Wang J. Liu Y. Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways. Int. J. Oncol. 2016 48 6 2608 2618 10.3892/ijo.2016.3488 27082429
    [Google Scholar]
  116. Hwang T.L. Chang C.H. Oridonin enhances cytotoxic activity of natural killer cells against lung cancer. Int. Immunopharmacol. 2023 122 110669 10.1016/j.intimp.2023.110669 37480753
    [Google Scholar]
  117. Zhang H.P. Li G.Q. Guo W.Z. Chen G.H. Tang H.W. Yan B. Li J. Zhang J.K. Wen P.H. Wang Z.H. Lv J.F. Zhang S.J. Oridonin synergistically enhances JQ1-triggered apoptosis in hepatocellular cancer cells through mitochondrial pathway. Oncotarget 2017 8 63 106833 106843 10.18632/oncotarget.21880 29290992
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096320596240913034833
Loading
/content/journals/ccdt/10.2174/0115680096320596240913034833
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: apoptosis ; oridonin ; Autophagy ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test