Skip to content
2000
image of Perspectives on Ergodic Cancer Therapy Derived from Cloning Genome Chaos via In Vivo Rhabdomyosarcoma RA-2 Models: a Narrative Review

Abstract

This review explores articles concerning the experimental research cycle on genome instability in cell populations of highly malignant recurrent organotropic rhabdomyosarcoma RA-2 in rats. Clonal analysis and cloning were pivotal components of this research, which relies on the frequency of cells with micronuclei and internuclear bridges to gauge the intensity of chromothripsis and break-fusion-bridge cycles. The efficacy of cloning, determined by these indicators, stemmed from the deliberate isolation of tumor stem cells, yielding clones in which chromothripsis activity and breakage-fusion-bridge cycles were sustained. Notably, it is plausible that the stem cells themselves, progenitors of these clones, harbor dicentric chromosomes and chromosomal fragments, contributing to the formation of “fatal micronuclei” in their karyotype. Cloning based on bridges and micronuclei has proven effective up to a certain threshold (15%-18%), reaffirming the predicted reproductive extinction of malignant cell populations under mutational pressure and genome chaos, as posited by the genetic theory of cell populations. Furthermore, this review highlights the potential of ergodic cancer therapy as a novel therapeutic strategy. Ergodic therapy offers promising prospects for late-stage and terminal malignant tumors, where conventional treatments may fall short due to advanced progression. Furthermore, by “enhancing chromothripsis” through the induction of additional micronuclei and bridges, ergodic cancer therapy seeks to increase genome chaos to a critical threshold, potentially halting malignant progression. This innovative approach presents opportunities to explore new drugs and targets for chromothripsis-based oncotherapy, addressing the pressing need for effective treatments in advanced stages of malignancy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096319768241003060636
2024-11-08
2025-01-18
Loading full text...

Full text loading...

References

  1. Heng J. Heng H.H. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin. Cancer Biol. 2022 81 160 175 10.1016/j.semcancer.2020.11.003 33189848
    [Google Scholar]
  2. Ye J.C. Horne S. Zhang J.Z. Jackson L. Heng H.H. Therapy induced genome chaos: A novel mechanism of rapid cancer drug resistance. Front. Cell Dev. Biol. 2021 9 676344 10.3389/fcell.2021.676344 34195196
    [Google Scholar]
  3. Alekseenko I.V. Pleshkan V.V. Monastyrskaya G.S. Kuzmich A.I. Snezhkov E.V. Didych D.A. Sverdlov E.D. Fundamentally low reproducibility in molecular genetic cancer research. Genetics 2016 52 7 745 760 29368838
    [Google Scholar]
  4. Waldron D. Chromothripsis and micronucleus formation. Nat. Rev. Genet. 2015 16 7 376 377 10.1038/nrg3970 26084493
    [Google Scholar]
  5. Luijten M.N.H. Lee J.X.T. Crasta K.C. Mutational game changer: Chromothripsis and its emerging relevance to cancer. Mutat. Res. Rev. Mutat. Res. 2018 777 29 51 10.1016/j.mrrev.2018.06.004 30115429
    [Google Scholar]
  6. Hatch E.M. Hetzer M.W. Linking micronuclei to chromosome fragmentation. Cell 2015 161 7 1502 1504 10.1016/j.cell.2015.06.005 26091034
    [Google Scholar]
  7. Umbreit N.T. Zhang C.Z. Lynch L.D. Blaine L.J. Cheng A.M. Tourdot R. Sun L. Almubarak H.F. Judge K. Mitchell T.J. Spektor A. Pellman D. Mechanisms generating cancer genome complexity from a single cell division error. Science 2020 368 6488 eaba0712 10.1126/science.aba0712 32299917
    [Google Scholar]
  8. Tang S. Stokasimov E. Cui Y. Pellman D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 2022 606 7916 930 936 10.1038/s41586‑022‑04767‑1 35477155
    [Google Scholar]
  9. Zhang C.Z. Spektor A. Cornils H. Francis J.M. Jackson E.K. Liu S. Meyerson M. Pellman D. Chromothripsis from DNA damage in micronuclei. Nature 2015 522 7555 179 184 10.1038/nature14493 26017310
    [Google Scholar]
  10. Rodriguez-Muñoz M. Anglada T. Genescà A. A matter of wrapper: Defects in the nuclear envelope of lagging and bridging chromatin threatens genome integrity. Semin. Cell Dev. Biol. 2022 123 124 130 10.1016/j.semcdb.2021.03.004 33757694
    [Google Scholar]
  11. Lewis C.W. Golsteyn R.M. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA. Cell Cycle 2016 15 22 3131 3145 10.1080/15384101.2016.1231287 27636097
    [Google Scholar]
  12. Liu S. Kwon M. Mannino M. Yang N. Renda F. Khodjakov A. Pellman D. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 2018 561 7724 551 555 10.1038/s41586‑018‑0534‑z 30232450
    [Google Scholar]
  13. Terradas M. Martín M. Genescà A. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Arch. Toxicol. 2016 90 11 2657 2667 10.1007/s00204‑016‑1818‑4 27542123
    [Google Scholar]
  14. Terradas M. Martín M. Genescà A. Detection of impaired DNA replication and repair in micronuclei as indicators of genomic instability and chromothripsis. Chromothripsis: Methods and Protocols. Pellestor F. New York Humana Press 2018 197 208 10.1007/978‑1‑4939‑7780‑2_13
    [Google Scholar]
  15. Sommer S. Buraczewska I. Kruszewski M. Micronucleus assay: The state of art, and future directions. Int. J. Mol. Sci. 2020 21 4 1534 10.3390/ijms21041534 32102335
    [Google Scholar]
  16. Kalsbeek D. Golsteyn R. G2/M-phase checkpoint adaptation and micronuclei formation as mechanisms that contribute to genomic instability in human cells. Int. J. Mol. Sci. 2017 18 11 2344 10.3390/ijms18112344 29113112
    [Google Scholar]
  17. Soto M. García-Santisteban I. Krenning L. Medema R.H. Raaijmakers J.A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 2018 131 13 jcs214742 10.1242/jcs.214742 29930083
    [Google Scholar]
  18. Kneissig M. Keuper K. de Pagter M.S. van Roosmalen M.J. Martin J. Otto H. Passerini V. Campos Sparr A. Renkens I. Kropveld F. Vasudevan A. Sheltzer J.M. Kloosterman W.P. Storchova Z. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. eLife 2019 8 e50292 10.7554/eLife.50292 31778112
    [Google Scholar]
  19. Guo X. Dai X. Wu X. Zhou T. Ni J. Xue J. Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020 129 3-4 181 200 10.1007/s00412‑020‑00741‑w 32671520
    [Google Scholar]
  20. Bel’govskaia P. Radiation damage to chromosomes at the early stage of salmon development. Cytology 1961 3 437
    [Google Scholar]
  21. Stepan’ian L.I. Vakhtin IuB. Selection for affinity to lung tissue in cell populations of experimental neoplasms. Cytology 1980 22 2 198 204 6892967
    [Google Scholar]
  22. Kaminskaia E.V. Vakhtin IuB. Artificial selection for increased metastatic potential in cell population of transplanted rhabdomyosarcoma RA-2 in rats. Biull. Eksp. Biol. Med. 1989 108 11 613 616 2633830
    [Google Scholar]
  23. Misteli T. The self-organizing genome: Principles of genome architecture and function. Cell 2020 183 1 28 45 10.1016/j.cell.2020.09.014 32976797
    [Google Scholar]
  24. Su J.-H. Zheng P. Kinrot S.S. Bintu B. Zhuang X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 2020 182 6 1641 1659 10.1016/j.cell.2020.07.032
    [Google Scholar]
  25. Heaven C.J. Wanstall H.C. Henthorn N.T. Warmenhoven J.W. Ingram S.P. Chadwick A.L. Santina E. Honeychurch J. Schmidt C.K. Kirkby K.J. Kirkby N.F. Burnet N.G. Merchant M.J. The suitability of micronuclei as markers of relative biological effect. Mutagenesis 2022 37 1 3 12 10.1093/mutage/geac001 35137176
    [Google Scholar]
  26. Kravtsov V.Iu. Proshin S.N. Iakovlev A.F. Kaminskaia E.V. Vakhtin IuB. Bridges and multipolar mitoses in populations of rat rhabdomyosarcoma RA-23 cells. Biull. Eksp. Biol. Med. 1997 123 5 569 572 9264715
    [Google Scholar]
  27. Guzhova I.V. Vakhtin IuB. Selection for a decrease in metastatic potential in a cell population of transplantable rat rhabdomyosarcoma RA-2. Cytology 1988 30 12 1482 1487 3247682
    [Google Scholar]
  28. Konstantinova M.F. Trusova V.D. Vakhtin IuB. Changes in primary heat sensitivity of rhabdomyosarcoma PA-2 cells in rats during selection for heat resistance. Cytology 1989 31 6 723 727 2815335
    [Google Scholar]
  29. Kravtsov V.Iu. Fedorova E.V. Kaminskaia E.V. Guzhova I.V. Iakovlev A.F. Vakhtin IuB. Interclonal and interpopulational differences in the frequency of spontaneous karyotypic changes in cell populations of transplantable rat rhabdomyosarcoma RA-2. Vopr. Onkol. 1992 38 10 1228 1235 1343150
    [Google Scholar]
  30. Kravtsov V.Iu. Gorokhov S.V. Kaminskaia E.V. Il’inskikh N.N. Vakhtin IuB. The dependence of the incidence of encountering cells with micronuclei in the experimental metastases of rat rhabdomyosarcoma on the duration of the growth and on the size of these metastases. Cytology 1992 34 3 28 30 1440926
    [Google Scholar]
  31. Tsuji H. Takahashi E.I. Tsuji S. Tobari I. Shiomi T. Hama-Inaba H. Sato K. Chromosomal instability in mutagen-sensitive mutants isolated from mouse lymphoma L5178Y cells I. Five different genes participate in the formation of baseline sister-chromatid exchanges and spontaneous chromosomal aberrations. Mutat. Res. 1987 178 1 99 106 10.1016/0027‑5107(87)90091‑1 3574327
    [Google Scholar]
  32. Kravtsov V.Iu. Rozanov IuM. Kaminskaia E.V. Iakovlev A.F. Vakhtin IuB. Changes in the frequency of cells with micronuclei in cell populations of rat transplantable rhabdomyosarcoma RA-2 as a result of selection for an increased and a decreased frequency of such cells. Cytology 1992 34 7 91 95, 102 1475857
    [Google Scholar]
  33. Kravtsov B.Iu. Iakovlev A.F. Kaminskaia E.V. Vakhtin IuB. Frequency of cells with bridges during selection of clone cells of transplantable rat rhabdomyosarcoma RA-2 on the increase and decrease of micronucleated cells. Dokl. Akad. Nauk SSSR 1992 324 2 440 444 1482506
    [Google Scholar]
  34. Proshin S.N. Kravtsov V.Iu. Iakovlev A.F. Kaminskaia E.V. Vakhtin IuB. Selection in vivo in cell populations of rat RA-23 rhabdomyosarcoma at the trait “frequency of cells with bridges. Genetics 1996 32 3 406 410 8723631
    [Google Scholar]
  35. Proshin S.N. Kravtsov V.Iu. Ol’nev M.G. Iaklov M.G. Vakhtin IuB. Chromosome bridges and tailed nuclei in malignant cell populations. Genetics 1998 34 1 61 64 9532453
    [Google Scholar]
  36. Kravtsov V.Iu. Proshin S.N. Fedortseva R.F. Treus V.V. Nikiforov A.M. Iakovlev A.F. Kaminskaia E.V. Vakhtin IuB. Frequency of cells with semi-bridges in cell populations in vivo. Dokl. Akad. Nauk SSSR 1996 350 6 831 833 8998455
    [Google Scholar]
  37. Kuzovatov S.N. Kravtsov V.Iu. Vakhtin IuB. Internuclear chromosomal bridges and nuclei with protrusions in cellular populations of rat PA-23 rhabdomyosarcoma. Cytology 2000 42 11 1097 1102 11204655
    [Google Scholar]
  38. Kravtsov V.Yu. Yakovlev A.F. Fedorova E.V. Vahtin Yu.B. Cell Selection Method in vivo. 1993 1806195
    [Google Scholar]
  39. Kravtsov V.Yu. Kaminskaia E.V. Iakovlev A.F. Vakhtin Yu.B. Pathological mitoses in clones of the RA-2 subline of rat transplantable rhabdomyosarcoma selected for increased and decreased frequencies of spontaneous micronuclei formation. Cytology 1994 36 211 214 7809970
    [Google Scholar]
  40. Kaminskaia E.V. Iartseva N.M. Fedortseva R.F. Vakhtin IuB. Instability of karyotype in the progeny of “true malignant cells” in rat rhabdomyosarcoma RA-2. Dokl. Akad. Nauk SSSR 1990 310 1 207 210 2338042
    [Google Scholar]
  41. Vakhtin Yu.B. Genetic Theory of Cell Populations 1980
    [Google Scholar]
  42. Guo X. Dai X. Wu X. Cao N. Wang X. Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. Int. J. Cancer 2021 148 4 812 824 10.1002/ijc.33300 32949152
    [Google Scholar]
  43. Mazzagatti A. Engel J.L. Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol. Cell 2024 84 1 55 69 10.1016/j.molcel.2023.11.002 38029753
    [Google Scholar]
  44. Kloosterman W.P. Cuppen E. Chromothripsis in congenital disorders and cancer: Similarities and differences. Curr. Opin. Cell Biol. 2013 25 3 341 348 10.1016/j.ceb.2013.02.008 23478216
    [Google Scholar]
  45. Stephens P.J. Greenman C.D. Fu B. Yang F. Bignell G.R. Mudie L.J. Pleasance E.D. Lau K.W. Beare D. Stebbings L.A. McLaren S. Lin M.L. McBride D.J. Varela I. Nik-Zainal S. Leroy C. Jia M. Menzies A. Butler A.P. Teague J.W. Quail M.A. Burton J. Swerdlow H. Carter N.P. Morsberger L.A. Iacobuzio-Donahue C. Follows G.A. Green A.R. Flanagan A.M. Stratton M.R. Futreal P.A. Campbell P.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011 144 1 27 40 10.1016/j.cell.2010.11.055 21215367
    [Google Scholar]
  46. Flavahan W.A. Gaskell E. Bernstein B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017 357 6348 eaal2380 10.1126/science.aal2380 28729483
    [Google Scholar]
  47. Dutta K. Kravtsov V. Oleynikova K. Ruzov A. Skorb E.V. Shityakov S. Analyzing the effects of single nucleotide polymorphisms on hnRNPA2/B1 protein stability and function: Insights for anticancer therapeutic design. ACS Omega 2024 9 5 10.1021/acsomega.3c07195 38343990
    [Google Scholar]
  48. Shityakov S. Kravtsov V. Skorb E.V. Nosonovsky M. Ergodicity breaking and self-destruction of cancer cells by induced genome chaos. Entropy (Basel) 2023 26 1 37 10.3390/e26010037 38248163
    [Google Scholar]
  49. Voronina N. Wong J.K.L. Hübschmann D. Hlevnjak M. Uhrig S. Heilig C.E. Horak P. Kreutzfeldt S. Mock A. Stenzinger A. Hutter B. Fröhlich M. Brors B. Jahn A. Klink B. Gieldon L. Sieverling L. Feuerbach L. Chudasama P. Beck K. Kroiss M. Heining C. Möhrmann L. Fischer A. Schröck E. Glimm H. Zapatka M. Lichter P. Fröhling S. Ernst A. The landscape of chromothripsis across adult cancer types. Nat. Commun. 2020 11 1 2320 10.1038/s41467‑020‑16134‑7 32385320
    [Google Scholar]
  50. Cortés-Ciriano I. Lee J.J.K. Xi R. Jain D. Jung Y.L. Yang L. Gordenin D. Klimczak L.J. Zhang C.Z. Pellman D.S. Park P.J. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 2020 52 3 331 341 10.1038/s41588‑019‑0576‑7 32025003
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096319768241003060636
Loading
/content/journals/ccdt/10.2174/0115680096319768241003060636
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test