Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

This review explores articles concerning the experimental research cycle on genome instability in cell populations of highly malignant recurrent organotropic rhabdomyosarcoma RA-2 in rats. Clonal analysis and cloning were pivotal components of this research, which relies on the frequency of cells with micronuclei and internuclear bridges to gauge the intensity of chromothripsis and break-fusion-bridge cycles. The efficacy of cloning, determined by these indicators, stemmed from the deliberate isolation of tumor stem cells, yielding clones in which chromothripsis activity and breakage-fusion-bridge cycles were sustained. Notably, it is plausible that the stem cells themselves, progenitors of these clones, harbor dicentric chromosomes and chromosomal fragments, contributing to the formation of “fatal micronuclei” in their karyotype. Cloning based on bridges and micronuclei has proven effective up to a certain threshold (15%-18%), reaffirming the predicted reproductive extinction of malignant cell populations under mutational pressure and genome chaos, as posited by the genetic theory of cell populations. Furthermore, this review highlights the potential of ergodic cancer therapy as a novel therapeutic strategy. Ergodic therapy offers promising prospects for late-stage and terminal malignant tumors, where conventional treatments may fall short due to advanced progression. Furthermore, by “enhancing chromothripsis” through the induction of additional micronuclei and bridges, ergodic cancer therapy seeks to increase genome chaos to a critical threshold, potentially halting malignant progression. This innovative approach presents opportunities to explore new drugs and targets for chromothripsis-based oncotherapy, addressing the pressing need for effective treatments in advanced stages of malignancy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096319768241003060636
2024-11-08
2026-02-22
Loading full text...

Full text loading...

References

  1. HengJ. HengH.H. Genome chaos: Creating new genomic information essential for cancer macroevolution.Semin. Cancer Biol.20228116017510.1016/j.semcancer.2020.11.003 33189848
    [Google Scholar]
  2. YeJ.C. HorneS. ZhangJ.Z. JacksonL. HengH.H. Therapy induced genome chaos: A novel mechanism of rapid cancer drug resistance.Front. Cell Dev. Biol.2021967634410.3389/fcell.2021.676344 34195196
    [Google Scholar]
  3. AlekseenkoI.V. PleshkanV.V. MonastyrskayaG.S. KuzmichA.I. SnezhkovE.V. DidychD.A. SverdlovE.D. Fundamentally low reproducibility in molecular genetic cancer research.Genetics2016527745760 29368838
    [Google Scholar]
  4. WaldronD. Chromothripsis and micronucleus formation.Nat. Rev. Genet.201516737637710.1038/nrg3970 26084493
    [Google Scholar]
  5. LuijtenM.N.H. LeeJ.X.T. CrastaK.C. Mutational game changer: Chromothripsis and its emerging relevance to cancer.Mutat. Res. Rev. Mutat. Res.2018777295110.1016/j.mrrev.2018.06.004 30115429
    [Google Scholar]
  6. HatchE.M. HetzerM.W. Linking micronuclei to chromosome fragmentation.Cell201516171502150410.1016/j.cell.2015.06.005 26091034
    [Google Scholar]
  7. UmbreitN.T. ZhangC.Z. LynchL.D. BlaineL.J. ChengA.M. TourdotR. SunL. AlmubarakH.F. JudgeK. MitchellT.J. SpektorA. PellmanD. Mechanisms generating cancer genome complexity from a single cell division error.Science20203686488eaba071210.1126/science.aba0712 32299917
    [Google Scholar]
  8. TangS. StokasimovE. CuiY. PellmanD. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair.Nature2022606791693093610.1038/s41586‑022‑04767‑1 35477155
    [Google Scholar]
  9. ZhangC.Z. SpektorA. CornilsH. FrancisJ.M. JacksonE.K. LiuS. MeyersonM. PellmanD. Chromothripsis from DNA damage in micronuclei.Nature2015522755517918410.1038/nature14493 26017310
    [Google Scholar]
  10. Rodriguez-MuñozM. AngladaT. GenescàA. A matter of wrapper: Defects in the nuclear envelope of lagging and bridging chromatin threatens genome integrity.Semin. Cell Dev. Biol.202212312413010.1016/j.semcdb.2021.03.004 33757694
    [Google Scholar]
  11. LewisC.W. GolsteynR.M. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA.Cell Cycle201615223131314510.1080/15384101.2016.1231287 27636097
    [Google Scholar]
  12. LiuS. KwonM. ManninoM. YangN. RendaF. KhodjakovA. PellmanD. Nuclear envelope assembly defects link mitotic errors to chromothripsis.Nature2018561772455155510.1038/s41586‑018‑0534‑z 30232450
    [Google Scholar]
  13. TerradasM. MartínM. GenescàA. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis.Arch. Toxicol.201690112657266710.1007/s00204‑016‑1818‑4 27542123
    [Google Scholar]
  14. TerradasM. MartínM. GenescàA. Detection of impaired DNA replication and repair in micronuclei as indicators of genomic instability and chromothripsis.In: Chromothripsis: Methods and Protocols. PellestorF. New YorkHumana Press201819720810.1007/978‑1‑4939‑7780‑2_13
    [Google Scholar]
  15. SommerS. BuraczewskaI. KruszewskiM. Micronucleus assay: The state of art, and future directions.Int. J. Mol. Sci.2020214153410.3390/ijms21041534 32102335
    [Google Scholar]
  16. KalsbeekD. GolsteynR. G2/M-phase checkpoint adaptation and micronuclei formation as mechanisms that contribute to genomic instability in human cells.Int. J. Mol. Sci.20171811234410.3390/ijms18112344 29113112
    [Google Scholar]
  17. SotoM. García-SantistebanI. KrenningL. MedemaR.H. RaaijmakersJ.A. Chromosomes trapped in micronuclei are liable to segregation errors.J. Cell Sci.201813113jcs21474210.1242/jcs.214742 29930083
    [Google Scholar]
  18. KneissigM. KeuperK. de PagterM.S. van RoosmalenM.J. MartinJ. OttoH. PasseriniV. Campos SparrA. RenkensI. KropveldF. VasudevanA. SheltzerJ.M. KloostermanW.P. StorchovaZ. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells.eLife20198e5029210.7554/eLife.50292 31778112
    [Google Scholar]
  19. GuoX. DaiX. WuX. ZhouT. NiJ. XueJ. WangX. Understanding the birth of rupture-prone and irreparable micronuclei.Chromosoma20201293-418120010.1007/s00412‑020‑00741‑w 32671520
    [Google Scholar]
  20. Bel’govskaiaP. Radiation damage to chromosomes at the early stage of salmon development.Cytology19613437
    [Google Scholar]
  21. Stepan’ianL.I. VakhtinIuB. Selection for affinity to lung tissue in cell populations of experimental neoplasms.Cytology1980222198204 6892967
    [Google Scholar]
  22. KaminskaiaE.V. VakhtinIuB. Artificial selection for increased metastatic potential in cell population of transplanted rhabdomyosarcoma RA-2 in rats.Biull. Eksp. Biol. Med.198910811613616 2633830
    [Google Scholar]
  23. MisteliT. The self-organizing genome: Principles of genome architecture and function.Cell20201831284510.1016/j.cell.2020.09.014 32976797
    [Google Scholar]
  24. SuJ.-H. ZhengP. KinrotS.S. BintuB. ZhuangX. Genome scale imaging of the 3D organization and transcriptional activity of chromatin.Cell202018261641165910.1016/j.cell.2020.07.032
    [Google Scholar]
  25. HeavenC.J. WanstallH.C. HenthornN.T. WarmenhovenJ.W. IngramS.P. ChadwickA.L. SantinaE. HoneychurchJ. SchmidtC.K. KirkbyK.J. KirkbyN.F. BurnetN.G. MerchantM.J. The suitability of micronuclei as markers of relative biological effect.Mutagenesis202237131210.1093/mutage/geac001 35137176
    [Google Scholar]
  26. KravtsovV.Iu. ProshinS.N. IakovlevA.F. KaminskaiaE.V. VakhtinIuB. Bridges and multipolar mitoses in populations of rat rhabdomyosarcoma RA-23 cells.Biull. Eksp. Biol. Med.19971235569572 9264715
    [Google Scholar]
  27. GuzhovaI.V. VakhtinIuB. Selection for a decrease in metastatic potential in a cell population of transplantable rat rhabdomyosarcoma RA-2.Cytology1988301214821487 3247682
    [Google Scholar]
  28. KonstantinovaM.F. TrusovaV.D. VakhtinIuB. Changes in primary heat sensitivity of rhabdomyosarcoma PA-2 cells in rats during selection for heat resistance.Cytology1989316723727 2815335
    [Google Scholar]
  29. KravtsovV.Iu. FedorovaE.V. KaminskaiaE.V. GuzhovaI.V. IakovlevA.F. VakhtinIuB. Interclonal and interpopulational differences in the frequency of spontaneous karyotypic changes in cell populations of transplantable rat rhabdomyosarcoma RA-2.Vopr. Onkol.1992381012281235 1343150
    [Google Scholar]
  30. KravtsovV.Iu. GorokhovS.V. KaminskaiaE.V. Il’inskikhN.N. VakhtinIuB. The dependence of the incidence of encountering cells with micronuclei in the experimental metastases of rat rhabdomyosarcoma on the duration of the growth and on the size of these metastases.Cytology19923432830 1440926
    [Google Scholar]
  31. TsujiH. TakahashiE.I. TsujiS. TobariI. ShiomiT. Hama-InabaH. SatoK. Chromosomal instability in mutagen-sensitive mutants isolated from mouse lymphoma L5178Y cells I. Five different genes participate in the formation of baseline sister-chromatid exchanges and spontaneous chromosomal aberrations.Mutat. Res.198717819910610.1016/0027‑5107(87)90091‑1 3574327
    [Google Scholar]
  32. KravtsovV.Iu. RozanovIuM. KaminskaiaE.V. IakovlevA.F. VakhtinIuB. Changes in the frequency of cells with micronuclei in cell populations of rat transplantable rhabdomyosarcoma RA-2 as a result of selection for an increased and a decreased frequency of such cells.Cytology19923479195, 1021475857
    [Google Scholar]
  33. KravtsovB.Iu. IakovlevA.F. KaminskaiaE.V. VakhtinIuB. Frequency of cells with bridges during selection of clone cells of transplantable rat rhabdomyosarcoma RA-2 on the increase and decrease of micronucleated cells.Dokl. Akad. Nauk SSSR19923242440444 1482506
    [Google Scholar]
  34. ProshinS.N. KravtsovV.Iu. IakovlevA.F. KaminskaiaE.V. VakhtinIuB. Selection in vivo in cell populations of rat RA-23 rhabdomyosarcoma at the trait “frequency of cells with bridges.Genetics1996323406410 8723631
    [Google Scholar]
  35. ProshinS.N. KravtsovV.Iu. Ol’nevM.G. IaklovM.G. VakhtinIuB. Chromosome bridges and tailed nuclei in malignant cell populations.Genetics19983416164 9532453
    [Google Scholar]
  36. KravtsovV.Iu. ProshinS.N. FedortsevaR.F. TreusV.V. NikiforovA.M. IakovlevA.F. KaminskaiaE.V. VakhtinIuB. Frequency of cells with semi-bridges in cell populations in vivo .Dokl. Akad. Nauk SSSR19963506831833 8998455
    [Google Scholar]
  37. KuzovatovS.N. KravtsovV.Iu. VakhtinIuB. Internuclear chromosomal bridges and nuclei with protrusions in cellular populations of rat PA-23 rhabdomyosarcoma.Cytology2000421110971102 11204655
    [Google Scholar]
  38. KravtsovV.Yu. YakovlevA.F. FedorovaE.V. VahtinYu.B. Cell Selection Method in vivo.19931806195
    [Google Scholar]
  39. KravtsovV.Yu. KaminskaiaE.V. IakovlevA.F. VakhtinYu.B. Pathological mitoses in clones of the RA-2 subline of rat transplantable rhabdomyosarcoma selected for increased and decreased frequencies of spontaneous micronuclei formation.Cytology199436211214 7809970
    [Google Scholar]
  40. KaminskaiaE.V. IartsevaN.M. FedortsevaR.F. VakhtinIuB. Instability of karyotype in the progeny of “true malignant cells” in rat rhabdomyosarcoma RA-2.Dokl. Akad. Nauk SSSR19903101207210 2338042
    [Google Scholar]
  41. VakhtinYu.B. Genetic Theory of Cell Populations1980
    [Google Scholar]
  42. GuoX. DaiX. WuX. CaoN. WangX. Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes.Int. J. Cancer2021148481282410.1002/ijc.33300 32949152
    [Google Scholar]
  43. MazzagattiA. EngelJ.L. LyP. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.Mol. Cell2024841556910.1016/j.molcel.2023.11.002 38029753
    [Google Scholar]
  44. KloostermanW.P. CuppenE. Chromothripsis in congenital disorders and cancer: Similarities and differences.Curr. Opin. Cell Biol.201325334134810.1016/j.ceb.2013.02.008 23478216
    [Google Scholar]
  45. StephensP.J. GreenmanC.D. FuB. YangF. BignellG.R. MudieL.J. PleasanceE.D. LauK.W. BeareD. StebbingsL.A. McLarenS. LinM.L. McBrideD.J. VarelaI. Nik-ZainalS. LeroyC. JiaM. MenziesA. ButlerA.P. TeagueJ.W. QuailM.A. BurtonJ. SwerdlowH. CarterN.P. MorsbergerL.A. Iacobuzio-DonahueC. FollowsG.A. GreenA.R. FlanaganA.M. StrattonM.R. FutrealP.A. CampbellP.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development.Cell20111441274010.1016/j.cell.2010.11.055 21215367
    [Google Scholar]
  46. FlavahanW.A. GaskellE. BernsteinB.E. Epigenetic plasticity and the hallmarks of cancer.Science20173576348eaal238010.1126/science.aal2380 28729483
    [Google Scholar]
  47. DuttaK. KravtsovV. OleynikovaK. RuzovA. SkorbE.V. ShityakovS. Analyzing the effects of single nucleotide polymorphisms on hnRNPA2/B1 protein stability and function: Insights for anticancer therapeutic design.ACS Omega20249510.1021/acsomega.3c07195 38343990
    [Google Scholar]
  48. ShityakovS. KravtsovV. SkorbE.V. NosonovskyM. Ergodicity breaking and self-destruction of cancer cells by induced genome chaos.Entropy (Basel)20232613710.3390/e26010037 38248163
    [Google Scholar]
  49. VoroninaN. WongJ.K.L. HübschmannD. HlevnjakM. UhrigS. HeiligC.E. HorakP. KreutzfeldtS. MockA. StenzingerA. HutterB. FröhlichM. BrorsB. JahnA. KlinkB. GieldonL. SieverlingL. FeuerbachL. ChudasamaP. BeckK. KroissM. HeiningC. MöhrmannL. FischerA. SchröckE. GlimmH. ZapatkaM. LichterP. FröhlingS. ErnstA. The landscape of chromothripsis across adult cancer types.Nat. Commun.2020111232010.1038/s41467‑020‑16134‑7 32385320
    [Google Scholar]
  50. Cortés-CirianoI. LeeJ.J.K. XiR. JainD. JungY.L. YangL. GordeninD. KlimczakL.J. ZhangC.Z. PellmanD.S. ParkP.J. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.Nat. Genet.202052333134110.1038/s41588‑019‑0576‑7 32025003
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096319768241003060636
Loading
/content/journals/ccdt/10.2174/0115680096319768241003060636
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test