Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

Cancer is one of the major causes of morbidity and mortality worldwide. Current treatments for both solid and hematological tumors are associated with severe adverse effects and drug resistance, necessitating the development of novel selective antineoplastic drugs.

Methods

The present study describes the antitumor activity of the imidazacridine derivative 5-acridin-9-ylmethylidene-2-thioxoimidazolidin-4-one (LPSF/AC05) in breast cancer, leukemia, and lymphoma cells. Cytotoxicity assays were performed in PBMC and in breast cancer, leukemia, and lymphoma cell lines using the MTT method. Changes in cell cycle progression and apoptosis were assessed using flow cytometry. Moreover, topoisomerase II inhibition assays were performed. LPSF/AC05 exhibited cytotoxicity in six of the nine cell lines tested.

Results

The best results for leukemia and lymphoma were observed in the Toledo, Jurkat, and Raji cell lines (IC = 27.18, 31.04, and 33.36 μM, respectively). For breast cancer, the best results were observed in the triple-negative cell line MDA-MB-231 (IC = 27.54 μM). The compound showed good selectivity, with no toxicity to normal human cells (IC > 100μM; selectivity index > 3). Cell death was primarily induced by apoptosis in all cell lines. Furthermore, LPSF/AC05 treatment induced cell cycle arrest at the G0/G1 phase in leukemia/lymphoma and at the G2/M phase in breast cancer. Finally, topoisomerase II was inhibited.

Conclusion

These results indicate the potential application of LPSF/AC05 in cancer therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096290753240613114122
2024-07-05
2025-04-15
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever‐increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.3358734086348
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. KumarD. KumarH. KumarV. DeepA. SharmaA. MarwahaM.G. MarwahaR.K. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity.Med. Drug Discov.20231710015010.1016/j.medidd.2022.100150
    [Google Scholar]
  4. López-HernándezJ.E. ContelM. Promising heterometallic compounds as anticancer agents: Recent studies in vivo.Curr. Opin. Chem. Biol.20237210225010.1016/j.cbpa.2022.10225036566618
    [Google Scholar]
  5. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  6. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  7. Küpeli AkkolE. GençY. KarpuzB. Sobarzo-SánchezE. CapassoR. Coumarins and coumarin-related compounds in pharmacotherapy of cancer.Cancers2020127195910.3390/cancers1207195932707666
    [Google Scholar]
  8. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  9. WangW.T. HanC. SunY.M. ChenT.Q. ChenY.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development.J. Hematol. Oncol.20191215510.1186/s13045‑019‑0748‑z31174564
    [Google Scholar]
  10. DragoJ.Z. ModiS. ChandarlapatyS. Unlocking the potential of antibody–drug conjugates for cancer therapy.Nat. Rev. Clin. Oncol.202118632734410.1038/s41571‑021‑00470‑833558752
    [Google Scholar]
  11. American Cancer Society | Cancer Facts & Statistics.Available from: http://cancerstatisticscenter.cancer.org/ [cited 2023 Oct 17].
  12. MomenimovahedZ. SalehiniyaH. Epidemiological characteristics of and risk factors for breast cancer in the world.Breast Cancer20191115116410.2147/BCTT.S17607031040712
    [Google Scholar]
  13. BispoJ.A.B. PinheiroP.S. KobetzE.K. Epidemiology and etiology of leukemia and lymphoma.Cold Spring Harb. Perspect. Med.2020106a03481910.1101/cshperspect.a03481931727680
    [Google Scholar]
  14. Chemotherapy for breast cancer.Available from: https://www.cancerresearchuk.org/about-cancer/breast-cancer/treatment/chemotherapy [cited 2023 Oct 26].
  15. RochéH. FumoleauP. SpielmannM. CanonJ.L. DelozierT. SerinD. SymannM. KerbratP. SouliéP. EichlerF. ViensP. MonnierA. VindevoghelA. CamponeM. GoudierM.J. BonneterreJ. FerreroJ.M. MartinA.L. GenèveJ. AsselainB. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: The FNCLCC PACS 01 Trial.J. Clin. Oncol.200624365664567110.1200/JCO.2006.07.391617116941
    [Google Scholar]
  16. DyshlovoyS.A. HoneckerF. Marine compounds and cancer: Updates 2020.Mar. Drugs2020181264310.3390/md1812064333333876
    [Google Scholar]
  17. BrönstrupM. SasseF. Natural products targeting the elongation phase of eukaryotic protein biosynthesis.Nat. Prod. Rep.202037675276210.1039/D0NP00011F32428051
    [Google Scholar]
  18. DeeksE.D. Polatuzumab vedotin: First global approval.Drugs201979131467147510.1007/s40265‑019‑01175‑031352604
    [Google Scholar]
  19. RafeiH. KantarjianH.M. JabbourE.J. Recent advances in the treatment of acute lymphoblastic leukemia.Leuk. Lymphoma201960112606262110.1080/10428194.2019.160507131092071
    [Google Scholar]
  20. TeacheyD.T. DevidasM. WoodB.L. ChenZ. HayashiR.J. HermistonM.L. AnnettR.D. ArcherJ.H. AsselinB.L. AugustK.J. ChoS.Y. DunsmoreK.P. FisherB.T. FreedmanJ.L. GalardyP.J. Harker-MurrayP. HortonT.M. JajuA.I. LamA. MessingerY.H. MilesR.R. OkadaM. PatelS.I. SchaferE.S. SchechterT. SinghN. SteeleA.C. SulisM.L. VargasS.L. WinterS.S. WoodC. Zweidler-McKayP. BollardC.M. LohM.L. HungerS.P. RaetzE.A. Children’s oncology group trial AALL1231: A phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma.J. Clin. Oncol.202240192106211810.1200/JCO.21.0267835271306
    [Google Scholar]
  21. LiuY.Q. WangX.L. HeD.H. ChengY.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals.Phytomedicine20218015340210.1016/j.phymed.2020.15340233203590
    [Google Scholar]
  22. CrossnohereN.L. RichardsonD.R. ReinhartC. O’DonoghueB. LoveS.M. SmithB.D. BridgesJ.F.P. Side effects from acute myeloid leukemia treatment: Results from a national survey.Curr. Med. Res. Opin.201935111965197010.1080/03007995.2019.163114931188058
    [Google Scholar]
  23. SchmidtM.E. SchererS. WiskemannJ. SteindorfK. Return to work after breast cancer: The role of treatment‐related side effects and potential impact on quality of life.Eur. J. Cancer Care2019284e1305110.1111/ecc.1305131033073
    [Google Scholar]
  24. LafayetteE. Vitalino de AlmeidaS. da Rocha PittaM. Carneiro BeltrãoE. Gonçalves da SilvaT. Olímpio de MouraR. da Rocha PittaI. de CarvalhoL.Jr do Carmo Alves de LimaM. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives.Molecules20131812150351505010.3390/molecules18121503524322489
    [Google Scholar]
  25. GoniL.K.M.O. Jafar MazumderM.A. TripathyD.B. QuraishiM.A. Acridine and its derivatives: synthesis, biological, and anticorrosion properties.Materials20221521756010.3390/ma1521756036363152
    [Google Scholar]
  26. ZhangQ. WangZ. ChenX. QiuH. GuY. WangN. WangT. WangZ. MaH. ZhaoY. ZhangB. 8a, a new acridine antiproliferative and pro-apoptotic agent targeting HDAC1/DNMT1.Int. J. Mol. Sci.20212211551610.3390/ijms2211551634073721
    [Google Scholar]
  27. DennyW.A. Acridine derivatives as chemotherapeutic agents.Curr. Med. Chem.20029181655166510.2174/092986702336927712171548
    [Google Scholar]
  28. GaoC. LiB. ZhangB. SunQ. LiL. LiX. ChenC. TanC. LiuH. JiangY. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents.Bioorg. Med. Chem.20152381800180710.1016/j.bmc.2015.02.03625778766
    [Google Scholar]
  29. ZhangB. DouZ. XiongZ. WangN. HeS. YanX. JinH. Design, synthesis and biological research of novel N-phenylbenzamide-4-methylamine acridine derivatives as potential topoisomerase I/II and apoptosis-inducing agents.Bioorg. Med. Chem. Lett.2019292312671410.1016/j.bmcl.2019.12671431635931
    [Google Scholar]
  30. FilosaR. PedutoA. MiccoS.D. CaprariisP. FestaM. PetrellaA. CapranicoG. BifulcoG. Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors.Bioorg. Med. Chem.2009171132410.1016/j.bmc.2008.11.02419058969
    [Google Scholar]
  31. EconomidesM.P. McCueD. BorthakurG. PemmarajuN. Topoisomerase II inhibitors in AML: Past, present, and future.Expert Opin. Pharmacother.201920131637164410.1080/14656566.2019.162129231136213
    [Google Scholar]
  32. Matias-BarriosV.M. RadaevaM. SongY. AlpersteinZ. LeeA.R. SchmittV. LeeJ. BanF. XieN. QiJ. LallousN. GleaveM.E. CherkasovA. DongX. Discovery of new catalytic topoisomerase II inhibitors for anticancer therapeutics.Front. Oncol.20211063314210.3389/fonc.2020.63314233598437
    [Google Scholar]
  33. CholewińskiG. DzierzbickaK. KołodziejczykA.M. Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis.Pharmacol. Rep.201163230533610.1016/S1734‑1140(11)70499‑621602588
    [Google Scholar]
  34. SunY.W. ChenK.Y. KwonC.H. ChenK.M. CK0403, a 9-aminoacridine, is a potent anti-cancer agent in human breast cancer cells.Mol. Med. Rep.201613193393810.3892/mmr.2015.460426648164
    [Google Scholar]
  35. GodboleA.A. AhmedW. BhatR.S. BradleyE.K. EkinsS. NagarajaV. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison.Biochem. Biophys. Res. Commun.2014446491692010.1016/j.bbrc.2014.03.02924642256
    [Google Scholar]
  36. BarrosF.W.A. BezerraD.P. FerreiraP.M.P. CavalcantiB.C. SilvaT.G. PittaM.G.R. de LimaM.C.A. GaldinoS.L. PittaI.R. Costa-LotufoL.V. MoraesM.O. BurbanoR.R. GuechevaT.N. HenriquesJ.A.P. PessoaC. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives.Toxicol. Appl. Pharmacol.20132681374610.1016/j.taap.2013.01.01023347980
    [Google Scholar]
  37. AkpanE.D. DagdagO. EbensoE.E. Recent progress on the anticorrosion activities of acridine and acridone derivatives: A review.J. Mol. Liq.202236111968610.1016/j.molliq.2022.119686
    [Google Scholar]
  38. de Oliveira ChagasMB Evaluation of anti-cancer activity and mechanism of action of new acridinic agents.Federal University of Pernambuco2012
    [Google Scholar]
  39. BergwerfH. MolView: An attempt to get the cloud into chemistry classrooms.2015Available from: https://confchem.ccce.divched.org/2015FallCCCENLP9#:~:text=MolView%20is%20a%20web%20application,1%5D%2C%20and%20many%20more.
  40. IslamA. RodriguesB.L. MarzanoI.M. Perreira-MaiaE.C. DittzD. Paz LopesM.T. IshfaqM. FrézardF. DemicheliC. Cytotoxicity and apoptotic activity of novel organobismuth(V) and organoantimony(V) complexes in different cancer cell lines.Eur. J. Med. Chem.201610925426710.1016/j.ejmech.2016.01.00326774931
    [Google Scholar]
  41. ValsterA. TranN.L. NakadaM. BerensM.E. ChanA.Y. SymonsM. Cell migration and invasion assays.Methods200537220821510.1016/j.ymeth.2005.08.00116288884
    [Google Scholar]
  42. FreiresI.A. MoreloD.F.C. SoaresL.F.F. CostaI.S. de AraújoL.P. BreseghelloI. AbdallaH.B. LazariniJ.G. RosalenP.L. PigossiS.C. FranchinM. Progress and promise of alternative animal and non-animal methods in biomedical research.Arch. Toxicol.20239792329234210.1007/s00204‑023‑03532‑137394624
    [Google Scholar]
  43. O’DonnellJ.S. HoefsmitE.P. SmythM.J. BlankC.U. TengM.W.L. The promise of neoadjuvant immunotherapy and surgery for cancer treatment.Clin. Cancer Res.201925195743575110.1158/1078‑0432.CCR‑18‑264131040150
    [Google Scholar]
  44. ZhuR. ZhangF. PengY. XieT. WangY. LanY. Current progress in cancer treatment using nanomaterials.Front. Oncol.20221293012510.3389/fonc.2022.93012535912195
    [Google Scholar]
  45. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  46. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  47. KantarjianH. KadiaT. DiNardoC. DaverN. BorthakurG. JabbourE. Garcia-ManeroG. KonoplevaM. RavandiF. Acute myeloid leukemia: Current progress and future directions.Blood Cancer J.20211124110.1038/s41408‑021‑00425‑333619261
    [Google Scholar]
  48. BailleuxC. GalJ. ChamoreyE. MograbiB. MilanoG. Artificial intelligence and anticancer drug development—keep a cool head.Pharmaceutics202416221110.3390/pharmaceutics1602021138399265
    [Google Scholar]
  49. HanY. DongW. GuoQ. LiX. HuangL. The importance of indole and azaindole scaffold in the development of antitumor agents.Eur. J. Med. Chem.202020311250610.1016/j.ejmech.2020.11250632688198
    [Google Scholar]
  50. PaprockaR. Wiese-SzadkowskaM. JanciauskieneS. KosmalskiT. KulikM. Helmin-BasaA. Latest developments in metal complexes as anticancer agents.Coord. Chem. Rev.202245221430710.1016/j.ccr.2021.214307
    [Google Scholar]
  51. MilewskaS. Niemirowicz-LaskowskaK. SiemiaszkoG. NowickiP. WilczewskaA.Z. CarH. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment.Int. J. Nanomedicine2021166593664410.2147/IJN.S32383134611400
    [Google Scholar]
  52. DasS. RoayapalleyP.K. SakagamiH. UmemuraN. GoreckiD.K.J. HossainM. KawaseM. DasU. DimmockJ.R. Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-selective cytotoxicity and structure-activity relationships.Medicines (Basel)2024111310.3390/medicines1101000338248717
    [Google Scholar]
  53. PucciC MartinelliC CiofaniG Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience201913961
    [Google Scholar]
  54. ZanardiE. BregniG. de BraudF. Di CosimoS. Better together: Targeted combination therapies in breast cancer.Semin. Oncol.201542688789510.1053/j.seminoncol.2015.09.02926615133
    [Google Scholar]
  55. ShortN.J. KonoplevaM. KadiaT.M. BorthakurG. RavandiF. DiNardoC.D. DaverN. Advances in the treatment of acute myeloid leukemia: New drugs and new challenges.Cancer Discov.202010450652510.1158/2159‑8290.CD‑19‑101132014868
    [Google Scholar]
  56. OsmanA.E.G. DeiningerM.W. Chronic myeloid leukemia: Modern therapies, current challenges and future directions.Blood Rev.20214910082510.1016/j.blre.2021.10082533773846
    [Google Scholar]
  57. LiuY. ZhouX. WangX. Targeting the tumor microenvironment in B-cell lymphoma: Challenges and opportunities.J. Hematol. Oncol.202114112510.1186/s13045‑021‑01134‑x34404434
    [Google Scholar]
  58. SchusterS.J. Bispecific antibodies for the treatment of lymphomas: Promises and challenges.Hematol. Oncol.202139S1Suppl. 111311610.1002/hon.285834105818
    [Google Scholar]
  59. HoudaI. DickhoffC. Uyl-de GrootC.A. DamhuisR.A.M. ReguartN. ProvencioM. LevyA. DziadziuszkoR. PompiliC. Di MaioM. ThomasM. BrunelliA. PopatS. SenanS. BahceI. Challenges and controversies in resectable non-small cell lung cancer: A clinician’s perspective.Lancet Reg. Health Eur.20243810084110.1016/j.lanepe.2024.10084138476749
    [Google Scholar]
  60. LiZ.L. ZhangH.L. HuangY. HuangJ.H. SunP. ZhouN.N. ChenY.H. MaiJ. WangY. YuY. ZhouL.H. LiX. YangD. PengX.D. FengG.K. TangJ. ZhuX.F. DengR. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation.Nat. Commun.2020111380610.1038/s41467‑020‑17395‑y32732922
    [Google Scholar]
  61. SyarifahS. WidyawatiT. Rita AnggrainiD. Sari WahyuniA. Indah SariM. Anticancer activity of uncaria gambir roxb on T47D breast cancer cells.J. Phys. Conf. Ser.20191317101210610.1088/1742‑6596/1317/1/012106
    [Google Scholar]
  62. QiuY YooHM ChoN YanP LiuZ ChengJ Secondary metabolites isolated from streptomyces sp. MJM3055 and their cytotoxicity against jurkat cells.Nat Prod Commun.202015121934578X20977591
    [Google Scholar]
  63. Di ChioC. ZhouM. EfferthT. SchirmeisterT. ZappalàM. EttariR. Synthesis and cytotoxicity of diarylpentanoids against sensitive CCRF‐CEM and multidrug‐resistant CEM/ADR5000 leukemia cells.Chem. Biodivers.2022192e20210045110.1002/cbdv.20210045134871465
    [Google Scholar]
  64. LiY. HuangK. LiuL. QuY. HuangY. WuY. WeiJ. Effects of complement and serum IgG on rituximab-dependent natural killer cell-mediated cytotoxicity against Raji cells.Oncol. Lett.201917133934710.3892/ol.2014.209930655772
    [Google Scholar]
  65. MańkaS. SmolewskiP. Cebula-ObrzutB. MajchrzakA. SzmejdaK. WitkowskaM. Cytotoxic activity of melatonin alone and in combination with doxorubicin and/or dexamethasone on diffuse large b-cell lymphoma cells in in vitro conditions.J. Pers. Med.2023139131410.3390/jpm1309131437763082
    [Google Scholar]
  66. HsiaoS.C. LiuH. HolstlawT.A. LiuC. FrancisC.Y. FrancisM.B. Real time assays for quantifying cytotoxicity with single cell resolution.PLoS One201386e6673910.1371/journal.pone.006673923826123
    [Google Scholar]
  67. Santos-PirathI.M. WalterL.O. MaioralM.F. PhilippusA.C. ZatelliG.A. HortaP.A. ColepicoloP. FalkenbergM.D.B. Santos-SilvaM.C. Apoptotic events induced by a natural plastoquinone from the marine alga Desmarestia menziesii in lymphoid neoplasms.Exp. Hematol.2020866777.e210.1016/j.exphem.2020.05.00332422231
    [Google Scholar]
  68. Santos-PirathÍ.M. WalterL.O. MaioralM.F. PachecoL.A. SensL. NunesR.J. Santos-SilvaM.C. Molecular events and cytotoxic effects of a novel thiosemicarbazone derivative in human leukemia and lymphoma cell lines.Hematol. Oncol. Stem Cell Ther.2021141516410.1016/j.hemonc.2020.07.00732763229
    [Google Scholar]
  69. ChoiY.H. Tacrolimus induces apoptosis in leukemia jurkat cells through inactivation of the reactive oxygen species-dependent phosphoinositide-3-kinase/Akt signaling pathway.Biotechnol. Bioprocess Eng.; BBE202227218319210.1007/s12257‑021‑0199‑6
    [Google Scholar]
  70. GanbarjeddiS. AzimiA. Zadi HeydarabadM. HemmatzadehM. MohammadiS. Mousavi ArdehaieR. ZamaniM. BaharaghdamS. EsmaeiliS. GhasemiA. Apoptosis induced by prednisolone occurs without altering the promoter methylation of BAX and BCL-2 genes in acute lymphoblastic leukemia cells CCRF-CEM.Asian Pac. J. Cancer Prev.202021252352910.31557/APJCP.2020.21.2.52332102534
    [Google Scholar]
  71. ZhaoH. LiS. WangG. ZhaoW. ZhangD. WangF. LiW. SunL. Study of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells through a CDK1 ‐involved pathway.Cancer Med.2019894348435810.1002/cam4.232431207099
    [Google Scholar]
  72. HorganX. TatumH. BrannanE. PaullD. RhodesL. Resveratrol analogues surprisingly effective against triple‑negative breast cancer, independent of ERα.Oncol. Rep.20194163517352610.3892/or.2019.712231002359
    [Google Scholar]
  73. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑910647931
    [Google Scholar]
  74. FouadY.A. AaneiC. Revisiting the hallmarks of cancer.Am. J. Cancer Res.2017751016103628560055
    [Google Scholar]
  75. NeophytouC.M. TrougakosI.P. ErinN. PapageorgisP. Apoptosis deregulation and the development of cancer multi-drug resistance.Cancers20211317436310.3390/cancers1317436334503172
    [Google Scholar]
  76. JanR. ChaudhryG.S. Understanding ApoptosisS. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.02431380246
    [Google Scholar]
  77. GhoshR. BhowmikS. BagchiA. DasD. GhoshS. Chemotherapeutic potential of 9-phenyl acridine: Biophysical studies on its binding to DNA.Eur. Biophys. J.20103981243124910.1007/s00249‑010‑0577‑z20135310
    [Google Scholar]
  78. HansdaS. GhoshG. GhoshR. 9-phenyl acridine photosensitizes A375 cells to UVA radiation.Heliyon202069e0473310.1016/j.heliyon.2020.e0473332944667
    [Google Scholar]
  79. ChaudhryG.S. Md AkimA. SungY.Y. SifzizulT.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics.Front. Pharmacol.20221384237610.3389/fphar.2022.842376
    [Google Scholar]
  80. ChenT. StephensP.A. MiddletonF.K. CurtinN.J. Targeting the S and G2 checkpoint to treat cancer.Drug Discov. Today2012175-619420210.1016/j.drudis.2011.12.00922192883
    [Google Scholar]
  81. ZhaoS. TangY. WangR. NajafiM. Mechanisms of cancer cell death induction by paclitaxel: An updated review.Apoptosis2022279-1064766710.1007/s10495‑022‑01750‑z35849264
    [Google Scholar]
  82. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: Emerging trends in clinics.Biology202110984910.3390/biology1009084934571726
    [Google Scholar]
  83. StarkG.R. TaylorW.R. Analyzing the G2/M Checkpoint.In: Checkpoint Controls and Cancer. Methods in Molecular BiologyTM Humana PressTotowa, NJ20041518210.1385/1‑59259‑788‑2:051
    [Google Scholar]
  84. WuJ. XuL. LiuB. SunW. HuY. YangY. GuoK. JiaX. SunH. WuJ. HuangY. JiW. FuS. QiaoY. ZhangX. Biomedical association analysis between G2/M checkpoint genes and susceptibility to HIV-1 infection and AIDS progression from a northern chinese MSM population.AIDS Res. Ther.20232015110.1186/s12981‑023‑00536‑w37468905
    [Google Scholar]
  85. MoonD.O. KimM.O. NamT.J. KimS.K. ChoiY.H. KimG.Y. Pectenotoxin-2 induces G2/M phase cell cycle arrest in human breast cancer cells via ATM and Chk1/2-mediated phosphorylation of cdc25C.Oncol. Rep.201024127127620514472
    [Google Scholar]
  86. LeeM.H. ChoY. KimD.H. WooH.J. YangJ.Y. KwonH.J. YeonM.J. ParkM. KimS.H. MoonC. TharmalingamN. KimT.U. KimJ.B. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1.Am. J. Transl. Res.20168125246525528077999
    [Google Scholar]
  87. ChengY.M. TsaiC.C. HsuY.C. Sulforaphane, a dietary isothiocyanate, induces G2/M arrest in cervical cancer cells through cyclinB1 downregulation and GADD45β/CDC2 association.Int. J. Mol. Sci.2016179153010.3390/ijms1709153027626412
    [Google Scholar]
  88. WodarzA. NäthkeI. Cell polarity in development and cancer.Nat. Cell Biol.2007991016102410.1038/ncb43317762893
    [Google Scholar]
  89. PersaO.D. KoesterJ. NiessenC.M. Regulation of cell polarity and tissue architecture in epidermal aging and cancer.J. Invest. Dermatol.20211414Suppl.1017102310.1016/j.jid.2020.12.01233531135
    [Google Scholar]
  90. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533835010.1038/nrc260719377506
    [Google Scholar]
  91. Matias-BarriosV.M. DongX. The Implication of topoisomerase II inhibitors in synthetic lethality for cancer therapy.Pharmaceuticals20231619410.3390/ph1601009436678591
    [Google Scholar]
  92. AlaaeldinR. Abdel-RahmanI.M. AliF.E.M. BekhitA.A. ElhamadanyE.Y. ZhaoQ.L. CuiZ.G. FathyM. Dual topoisomerase I/II inhibition-induced apoptosis and necro-apoptosis in cancer cells by a novel ciprofloxacin derivative via RIPK1/RIPK3/MLKL activation.Molecules20222722799310.3390/molecules2722799336432094
    [Google Scholar]
  93. WangZ. ForelliN. HernandezY. TerneiM. BradyS.F. Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis.Nat. Commun.202213184210.1038/s41467‑022‑28292‑x35149673
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096290753240613114122
Loading
/content/journals/ccdt/10.2174/0115680096290753240613114122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test