Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Human cervix adenocarcinoma (CC) caused by papillomavirus is the third most common cancer among female malignant tumors. Bioactive compounds such as cyclodipeptides (CDPs) possess cytotoxic effects in human cervical cancer HeLa cells mainly by blocking the PI3K/Akt/mTOR pathway and subsequently inducing gene expression by countless transcription regulators. However, the upstream elements of signaling pathways have not been well studied.

Methods

To elucidate the cytotoxic and antiproliferative responses of the HeLa cell line to CDPs by a transcriptomic analysis previously carried out, we identified by immunochemical analyses, differential expression of genes related to the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/MET) receptors. Furthermore, molecular docking was carried out to evaluate the interactions of CDPs with the EGF and MET substrate binding sites.

Results

Immunochemical and molecular docking analyses suggest that the HGF/MET receptor participation in CDPs cytotoxic effect was independent of the protein expression levels. However, protein modulation of downstream Met-targets occurred due to the inhibition of phosphorylation of the HGF/MET receptor. Results suggest that the antiproliferative and cytotoxicity of CDPs in HeLa cells involve the HGF/MET receptor upstream of PI3K/Akt/mTOR pathway; assays with the human breast cancer MCF-7 and MDA-MB-231cell lines supported the finding.

Conclusion

Data provide new insights into the molecular mechanisms involved in CDPs cytotoxicity and antiproliferative effects, suggesting that the signal transduction mechanism may be related to the inhibition of the phosphorylation of the EGF/MET receptor at the level of substrate binding site by an inhibition mechanism similar to that of Gefitinib and Foretinib anti-neoplastic drugs.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096285034240323035013
2024-04-15
2025-01-18
Loading full text...

Full text loading...

References

  1. ArbynM. WeiderpassE. BruniL. de SanjoséS. SaraiyaM. FerlayJ. BrayF. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis.Lancet Glob. Health202082e191e20310.1016/S2214‑109X(19)30482‑631812369
    [Google Scholar]
  2. BordersEB BivonaC MedinaPJ Mammalian target of rapamycin: Biological function and target for novel anticancer agents.Am J Health Syst Pharm.201067242095210610.2146/ajhp100020
    [Google Scholar]
  3. BelloM.J.O. GarcíaC.A. LizanoM. Epidemiology and molecular biology of HPV variants in cervical cancer: The state of the art in Mexico.Int. J. Mol. Sci.20222315856610.3390/ijms2315856635955700
    [Google Scholar]
  4. CorreaR.M. BaenaA. VallsJ. ColucciM.C. MendozaL. RolM. WiesnerC. FerreraA. FellnerM.D. GonzálezJ.V. BasilettiJ.A. MongelosP. de la PeñaR.M. SainoA. KasamatsuE. VelardeC. MacavilcaN. MartinezS. VenegasG. CalderónA. RodriguezG. BarriosH. HerreroR. AlmonteM. PicconiM.A. Distribution of human papillomavirus genotypes by severity of cervical lesions in HPV screened positive women from the ESTAMPA study in Latin America.PLoS One2022177e027220510.1371/journal.pone.027220535905130
    [Google Scholar]
  5. OlusolaP. BanerjeeH.N. PhilleyJ.V. DasguptaS. Human papilloma virus-associated cervical cancer and health disparities.Cells20198662210.3390/cells806062231234354
    [Google Scholar]
  6. YangM. WangM. LiX. XieY. XiaX. TianJ. ZhangK. TangA. Wnt signaling in cervical cancer?J. Cancer2018971277128610.7150/jca.2200529675109
    [Google Scholar]
  7. HuR. WangM. NiuW. WangY. LiuY. LiuL. WangM. ZhongJ. YouH. WuX. DengN. LuL. WeiL. SKA3 promotes cell proliferation and migration in cervical cancer by activating the PI3K/Akt signaling pathway.Cancer Cell Int.201818118310.1186/s12935‑018‑0670‑430459531
    [Google Scholar]
  8. SundströmK. ElorantaS. SparénP. DahlströmA.L. GunnellA. LindgrenA. PalmgrenJ. PlonerA. SanjeeviC.B. MelbyeM. DillnerJ. AdamiH.O. YlitaloN. Prospective study of human papillomavirus (HPV) types, HPV persistence, and risk of squamous cell carcinoma of the cervix.Cancer Epidemiol. Biomarkers Prev.201019102469247810.1158/1055‑9965.EPI‑10‑042420671136
    [Google Scholar]
  9. KuguyoO. TsikaiN. ThomfordN.E. MagwaliT. MadziyireM.G. NhachiC.F.B. MatimbaA. DandaraC. Genetic susceptibility for cervical cancer in African populations: What are the host genetic drivers?OMICS201822746848310.1089/omi.2018.007530004844
    [Google Scholar]
  10. MerinoM.J. ParedesC.A. UlloaV.E. ZavaletaR.L. GonzalezF.A.M. LizanoM. The role of signaling pathways in cervical cancer and molecular therapeutic targets.Arch. Med. Res.201445752553910.1016/j.arcmed.2014.10.00825450584
    [Google Scholar]
  11. Hernandez-PadillaL. Reyes-De la CruzH. Campos-GarciaJ. Antiproliferative effect of bacterial cyclodipeptides in the HeLa line of human cervical cancer reveals multiple protein kinase targeting, including mTORC1/C2 complex inhibition in a TSC1/2-dependent manner.Apoptosis2020259-1063264710.1007/s10495‑020‑01619‑z32617785
    [Google Scholar]
  12. Duran-MaldonadoM.X. Hernandez-PadillaL. Gonzalez-PerezJ.C. Díaz-PérezA.L. Martinez-AlcantarL. Reyes-De la CruzH. Rodriguez-ZavalaJ.S. Pacheco-RodriguezG. MossJ. Campos-GarciaJ. Bacterial cyclodipeptides target signal pathways involved in malignant melanoma.Front. Oncol.202010111110.3389/fonc.2020.0111132793477
    [Google Scholar]
  13. Hernandez-PadillaL. Vazquez-RiveraD. Sanchez-BrionesL.A. Díaz-PérezA.L. Moreno-RodriguezJ. Moreno-EutimioM.A. Meza-CarmenV. Reyes-De la CruzH. Campos-GarciaJ. The antiproliferative effect of cyclodipeptides from pseudomonas aeruginosa PAO1 on HeLa cells involves inhibition of phosphorylation of Akt and S6k kinases.Molecules2017226102410.3390/molecules2206102428632179
    [Google Scholar]
  14. BraunsS.C. MilneP. NaudéR. Van de VenterM. Selected cyclic dipeptides inhibit cancer cell growth and induce apoptosis in HT-29 colon cancer cells.Anticancer Res.2004243a1713171915274345
    [Google Scholar]
  15. FurukawaT. AkutagawaT. FunataniH. UchidaT. HottaY. NiwaM. TakayaY. Cyclic dipeptides exhibit potency for scavenging radicals.Bioorg. Med. Chem.20122062002200910.1016/j.bmc.2012.01.05022356736
    [Google Scholar]
  16. KumarN.S. DileepC. MohandasC. NambisanB. CaJ. Cyclo( d -Tyr- d -Phe): A new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode.J. Pept. Sci.201420317318510.1002/psc.259424353056
    [Google Scholar]
  17. Vazquez-RiveraD. GonzálezO. RodríguezG.J. Díaz-PérezA.L. Ochoa-ZarzosaA. López-BucioJ. Meza-CarmenV. Campos-GarciaJ. Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines.BioMed Res. Int.201520151910.1155/2015/19760825821788
    [Google Scholar]
  18. LiskampR.M.J. RijkersD.T.S. KruijtzerJ.A.W. KemminkJ. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics.Chembiochem2011121116261653
    [Google Scholar]
  19. MenegattiS. HussainM. NaikA.D. CarbonellR.G. RaoB.M. mRNA display selection and solid‐phase synthesis of Fc‐binding cyclic peptide affinity ligands.Biotechnol. Bioeng.2013110385787010.1002/bit.2476023108907
    [Google Scholar]
  20. Ortíz-CastroR. Díaz-PérezC. Martinez-TrujilloM. del RíoR.E. Campos-GarciaJ. López-BucioJ. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants.Proc. Natl. Acad. Sci.2011108177253725810.1073/pnas.100674010821482761
    [Google Scholar]
  21. KarbowniczekM. SpittleC.S. MorrisonT. WuH. HenskeE.P. mTOR is activated in the majority of malignant melanomas.J. Invest. Dermatol.2008128498098710.1038/sj.jid.570107417914450
    [Google Scholar]
  22. BatoolA. MajeedS.T. AashaqS. MajeedR. BhatN.N. AndrabiK.I. Eukaryotic initiation factor 4E is a novel effector of mTORC1 signaling pathway in cross talk with Mnk1.Mol. Cell. Biochem.20204651-2132610.1007/s11010‑019‑03663‑z31782083
    [Google Scholar]
  23. YangG. MurashigeD.S. HumphreyS.J. JamesD.E. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation.Cell Rep.201512693794310.1016/j.celrep.2015.07.01626235620
    [Google Scholar]
  24. Lázaro-MixtecoP.E. Gonzalez-CoronelJ.M. Hernandez-PadillaL. Martinez-AlcantarL. Martinez-CarranzaE. López-BucioJ.S. Guevara-GarciaÁ.A. Campos-GarciaJ. Transcriptomics reveals the mevalonate and cholesterol pathways blocking as part of the bacterial cyclodipeptides cytotoxic effects in HeLa cells of human cervix adenocarcinoma.Front. Oncol.20221279053710.3389/fonc.2022.79053735359411
    [Google Scholar]
  25. CecchiF. RabeD.C. BottaroD.P. Targeting the HGF/Met signaling pathway in cancer therapy.Expert Opin. Ther. Targets201216655357210.1517/14728222.2012.68095722530990
    [Google Scholar]
  26. MoosaviF. GiovannettiE. SasoL. FiruziO. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers.Crit. Rev. Clin. Lab. Sci.201956853356610.1080/10408363.2019.165382131512514
    [Google Scholar]
  27. MatsumotoK. FunakoshiH. TakahashiH. SakaiK. HGF–Met pathway in regeneration and drug discovery.Biomedicines20142427530010.3390/biomedicines204027528548072
    [Google Scholar]
  28. CecchiF RabeDC BottaroDP Targeting the HGF/Met signalling pathway in cancer.Europ. J Cancer201046712601270
    [Google Scholar]
  29. ParikhR.A. WangP. BeumerJ.H. ChuE. ApplemanL.J. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment.OncoTargets Ther.2014796998324959084
    [Google Scholar]
  30. FuJ. SuX. LiZ. DengL. LiuX. FengX. PengJ. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence.Oncogene202140284625465110.1038/s41388‑021‑01863‑w34145400
    [Google Scholar]
  31. ShenZ. XueW. ZhengY. GengQ. WangL. FanZ. WangW. YueY. ZhaiY. LiL. ZhaoJ. Molecular mechanism study of HGF/c-MET pathway activation and immune regulation for a tumor diagnosis model.Cancer Cell Int.202121137410.1186/s12935‑021‑02051‑234261467
    [Google Scholar]
  32. XiangC. ChenJ. FuP. HGF/Met signaling in cancer invasion: The impact on cytoskeleton remodeling.Cancers20179124410.3390/cancers905004428475121
    [Google Scholar]
  33. ZhaoY. YeW. WangY.D. ChenW.D. HGF/c-Met: A key promoter in liver regeneration.Front Pharmacol202213808855
    [Google Scholar]
  34. SunL. ZhuH. ZhangK. GAB1 alleviates septic lung injury by inhibiting the TLR4/ NF-κB pathway.Clin. Exp. Pharmacol. Physiol.20224919410310.1111/1440‑1681.1358934498273
    [Google Scholar]
  35. WangX. ZhaoY. ZhouD. TianY. FengG. LuZ. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice.Cell Death Dis.202112221210.1038/s41419‑021‑03519‑933637697
    [Google Scholar]
  36. HanS. LiX. GanY. LiW. LicochalconeA. Licochalcone a promotes the ubiquitination of c-Met to abrogate gefitinib resistance.BioMed Res. Int.2022202211210.1155/2022/568783235309168
    [Google Scholar]
  37. KimS.M. HanJ.M. LeT.T. SohngJ.K. JungH.J. Anticancer and antiangiogenic activities of novel α-mangostin glycosides in human hepatocellular carcinoma cells via downregulation of c-Met and HIF-1α.Int. J. Mol. Sci.20202111404310.3390/ijms21114043
    [Google Scholar]
  38. OrofiammaL.A. VuralD. AntonescuC.N. Control of cell metabolism by the epidermal growth factor receptor.Biochim. Biophys. Acta Mol. Cell Res.202218691211935910.1016/j.bbamcr.2022.11935936089077
    [Google Scholar]
  39. KumagaiS. KoyamaS. NishikawaH. Antitumour immunity regulated by aberrant ERBB family signalling.Nat. Rev. Cancer202121318119710.1038/s41568‑020‑00322‑033462501
    [Google Scholar]
  40. KwonM.J. KimD.H. ParkH.R. ShinH.S. KwonJ.H. LeeD.J. KimJ.H. ChoS.J. NamE.S. Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus–negative tonsillar squamous cell carcinoma and their prognostic significances.Hum. Pathol.20144571327133810.1016/j.humpath.2014.03.00324810547
    [Google Scholar]
  41. BoromandN. HasanzadehM. ShahidSalesS. FarazestanianM. GharibM. FiujiH. BehboodiN. GhobadiN. HassanianS.M. FernsG.A. AvanA. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer.J. Cell. Physiol.201823364490449610.1002/jcp.2623229058790
    [Google Scholar]
  42. HuangX LiE ShenH WangX TangT ZhangX Targeting the HGF/MET axis in cancer therapy: Challenges in resistance and opportunities for improvement.Front. Cell. Dev. Biol.20208152
    [Google Scholar]
  43. FaiellaA. RiccardiF. CartenìG. ChiurazziM. OnofrioL. The emerging role of c-met in carcinogenesis and clinical implications as a possible therapeutic target.J. Oncol.2022202211210.1155/2022/517918235069735
    [Google Scholar]
  44. Ho-YenC.M. JonesJ.L. KermorgantS. The clinical and functional significance of c-Met in breast cancer: A review.Breast Cancer Res.20151715210.1186/s13058‑015‑0547‑625887320
    [Google Scholar]
  45. GonzálezO. Ortíz-CastroR. Díaz-PérezC. Díaz-PérezA.L. Magaña-DueñasV. López-BucioJ. Campos-GarciaJ. Non-ribosomal peptide synthases from pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host.Microb. Ecol.201773361662910.1007/s00248‑016‑0896‑427900439
    [Google Scholar]
  46. LuceyB.P. ReesN.W.A. HutchinsG.M. Henrietta lacks, HeLa cells, and cell culture contamination.Arch. Pathol. Lab. Med.200913391463146710.5858/133.9.146319722756
    [Google Scholar]
  47. TianT. MCF-7 cells lack the expression of Caspase-3.Int. J. Biol. Macromol.202323112331010.1016/j.ijbiomac.2023.12331036690238
    [Google Scholar]
  48. AmaroA. AngeliniG. MirisolaV. EspositoA.I. ReverberiD. MatisS. MaffeiM. GiarettiW. VialeM. GangemiR. EmioniteL. AstigianoS. CilliM. BachmeierB.E. KillianP.H. AlbiniA. PfefferU. A highly invasive subpopulation of MDA-MB-231 breast cancer cells shows accelerated growth, differential chemoresistance, features of apocrine tumors and reduced tumorigenicity in vivo.Oncotarget2016742688036882010.18632/oncotarget.1193127626697
    [Google Scholar]
  49. PräbstK. EngelhardtH. RinggelerS. HübnerH. Basic colorimetric proliferation assays: MTT, WST, and resazurin.Methods Mol. Biol.2017160111710.1007/978‑1‑4939‑6960‑9_128470513
    [Google Scholar]
  50. CrowleyL.C. MarfellB.J. ScottA.P. WaterhouseN.J. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry.Cold Spring Harb. Protoc.2016201611pdb.prot08728810.1101/pdb.prot08728827803250
    [Google Scholar]
  51. DesnoyersS. BourassaS. PoirierG.G. High-performance electrophoresis chromatography.Methods Mol. Biol.1996593713808798215
    [Google Scholar]
  52. HnaskoT.S. HnaskoR.M. The western blot.Methods Mol. Biol.20151318879610.1007/978‑1‑4939‑2742‑5_926160567
    [Google Scholar]
  53. KimB. Western blot techniques.Methods Mol. Biol.2017160613313910.1007/978‑1‑4939‑6990‑6_928501998
    [Google Scholar]
  54. KeenanA.B. TorreD. LachmannA. LeongA.K. WojciechowiczM.L. UttiV. JagodnikK.M. KropiwnickiE. WangZ. Ma’ayanA. ChEA3: Transcription factor enrichment analysis by orthogonal omics integration.Nucleic Acids Res.201947W1W212W22410.1093/nar/gkz44631114921
    [Google Scholar]
  55. MorrisGM HueyR LindstromW SannerMF BelewRK GoodsellDS AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J Comput Chem.2009301627852791
    [Google Scholar]
  56. DelanoW.L. The PyMOL Molecular Graphics SystemDelano ScientificSan Carlos2002
    [Google Scholar]
  57. VolkovaL.V. PashovA.I. OmelchukN.N. Cervical carcinoma.Int. J. Mol. Sci.202122221257110.3390/ijms22221257134830452
    [Google Scholar]
  58. GarridoR.E.R. GutiérrezM. FloresV.M. Circulating cervical cancer biomarkers potentially useful in medical attention (Review).Mol. Clin. Oncol.20231821310.3892/mco.2023.260936761385
    [Google Scholar]
  59. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  60. CuiS.X. YuX.F. QuX.J. Roles and signaling pathways of des-γ-carboxyprothrombin in the progression of hepatocellular carcinoma.Cancer Invest.201634945946410.1080/07357907.2016.122744527673353
    [Google Scholar]
  61. MirandaO. FarooquiM. SiegfriedJ. Status of agents targeting the HGF/c-met axis in lung cancer.Cancers201810928010.3390/cancers1009028030134579
    [Google Scholar]
  62. McLachlanT. MatthewsW.C. JacksonE.R. StaudtD.E. DouglasA.M. FindlayI.J. PerssonM.L. DuchatelR.J. MannanA. GermonZ.P. DunM.D. B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers.Mol. Cancer Res.202220121711172310.1158/1541‑7786.MCR‑22‑056736166198
    [Google Scholar]
  63. HafeziS. RahmaniM. Targeting BCL-2 in cancer: Advances, challenges, and perspectives.Cancers2021136129210.3390/cancers1306129233799470
    [Google Scholar]
  64. ZinsznerH. KurodaM. WangX. BatchvarovaN. LightfootR.T. RemottiH. StevensJ.L. RonD. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.Genes Dev.199812798299510.1101/gad.12.7.9829531536
    [Google Scholar]
  65. LinH. LiuS. GaoW. LiuH. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ.J. Pharm. Pharmacol.202072680781510.1111/jphp.1324332189359
    [Google Scholar]
  66. WangL. XiaoX. LiD. ChiY. WeiP. WangY. NiS. TanC. ZhouX. DuX. Abnormal expression of GADD45B in human colorectal carcinoma.J. Transl. Med.201210121510.1186/1479‑5876‑10‑21523110778
    [Google Scholar]
  67. ZhaoZ. GaoY. GuanX. LiuZ. JiangZ. LiuX. LinH. YangM. LiC. YangR. ZouS. WangX. GADD45B as a prognostic and predictive biomarker in stage II colorectal cancer.Genes20189736110.3390/genes907036130029519
    [Google Scholar]
  68. MungrueI.N. PagnonJ. KohannimO. GargalovicP.S. LusisA.J. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade.J. Immunol.2009182146647610.4049/jimmunol.182.1.46619109178
    [Google Scholar]
  69. JakobsenC.H. StørvoldG.L. BremsethH. FollestadT. SandK. MackM. OlsenK.S. LundemoA.G. IversenJ.G. KrokanH.E. SchønbergS.A. DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis.J. Lipid Res.200849102089210010.1194/jlr.M700389‑JLR20018566476
    [Google Scholar]
  70. RozpedekW. PytelD. MuchaB. LeszczynskaH. DiehlJ.A. MajsterekI. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress.Curr. Mol. Med.201616653354410.2174/156652401666616052314393727211800
    [Google Scholar]
  71. CruzV.O. MejíaL.M.A. RomeroA.L.E. ArroyoC.I. Recent advances in PTP1B signaling in metabolism and cancer.Biosci. Rep.20214111BSR2021199410.1042/BSR2021199434726241
    [Google Scholar]
  72. BaharM.E. KimH.J. KimD.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies.Signal Transduct. Target. Ther.20238145510.1038/s41392‑023‑01705‑z38105263
    [Google Scholar]
  73. LiuX SunR ChenJ LiuL CuiX ShenS Crosstalk mechanisms between HGF/c-Met axis and ncRNAs in malignancy.Front. Cell. Dev. Biol.2020823
    [Google Scholar]
  74. ZhanH TuS ZhangF ShaoA LinJ. MicroRNAs and long non-coding RNAs in c-met-regulated cancers.Front. Cell. Dev. Biol.2020814510.3389/fcell.2020.00145
    [Google Scholar]
  75. FramptonG.M. AliS.M. RosenzweigM. ChmieleckiJ. LuX. BauerT.M. AkimovM. BufillJ.A. LeeC. JentzD. HooverR. OuS.H.I. SalgiaR. BrennanT. ChalmersZ.R. JaegerS. HuangA. ElvinJ.A. ErlichR. FichtenholtzA. GowenK.A. GreenboweJ. JohnsonA. KhairaD. McMahonC. SanfordE.M. RoelsS. WhiteJ. GreshockJ. SchlegelR. LipsonD. YelenskyR. MorosiniD. RossJ.S. CollissonE. PetersM. StephensP.J. MillerV.A. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors.Cancer Discov.20155885085910.1158/2159‑8290.CD‑15‑028525971938
    [Google Scholar]
  76. NakopoulouL. GakiopoulouH. KeramopoulosA. GiannopoulouI. AthanassiadouP. MavrommatisJ. DavarisP.S. c‐met tyrosine kinase receptor expression is associated with abnormal β-catenin expression and favourable prognostic factors in invasive breast carcinoma.Histopathology200036431332510.1046/j.1365‑2559.2000.00847.x10759945
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096285034240323035013
Loading
/content/journals/ccdt/10.2174/0115680096285034240323035013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test