Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEAS) and tetrahydrocortisol (THC) with apolipoprotein A-I form the biologically active complexes able to interact specifically with eukaryotic DNA. This conjugate is highly cooperative and results in local splitting of DNA. Specific binding sites of steroid-apoA-I complexes are the (GCC/GGC)n sequences. At the sites of splitting, single-stranded regions sensitized to the action of S1-nuclease form. These regions are irregularly distributed over DNA. The formation of single-stranded DNA regions can promote the interaction with RNA-polymerase. Formation of the biologically active THC (DHEA)-apoA-I complexes is related with resident macrophages having 5α- and 5 β-reductase activity. These complexes greatly enhance the rate of protein biosynthesis in hepatocytes. The cortisol-apoA-I complex does not show such effect. So, the reduced forms of fascicular zone and reticular cortex adrenal zone hormones have synergism of action toward gene expression and protein biosynthesis. The intensification of tissues regeneration during the stress period as a result of given mechanism is discussed.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/187231311793564315
2011-01-01
2025-05-22
Loading full text...

Full text loading...

/content/journals/ccb/10.2174/187231311793564315
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test