Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Nanomaterials have one dimension < 100nm and possess chemical properties dictated by chemical composition, their unusually small size and very large proportional surface area. Even chemically inert materials can have significant chemical activity on the nanoscale (e.g. surface catalysis). Some nanomaterials are toxic in biological scenarios but remarkably little is known about this, especially in terms of key attributes underlying toxicity. Recent research suggests that nanomaterials can cross important biobarriers (e.g. blood-brain), enter cells and trigger oxidative stress by production of reactive oxygen species. Key factors in nanomaterial toxicity seem to be size, structure, chemical composition and a “corona” of proteins coating the particle which may confer biological functionality. Nanomaterials have extensive applications in low-volume, high-value scenarios such as biomedical devices but it is projected that they will increasingly feature in high-volume, low value applications (e.g. food packagings). Thus, nanomaterials may present an emerging longterm environmental threat. This review summarizes some of the key recent studies on nanomaterial toxicity in a variety of biological systems; the biological consequences of this toxicity and attributes of nanoparticles implicated in toxicity. The wider environmental implication of large-scale nanomaterial use is also discussed and perspectives for future research explored.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/187231310791170784
2010-05-01
2025-05-26
Loading full text...

Full text loading...

/content/journals/ccb/10.2174/187231310791170784
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test