Skip to content
2000
image of Innovative Nitrogen-Based Heterocycles: Pioneering Advances in Anticancer Therapeutics

Abstract

Structural diversity, pharmacological relevance, and the ability to include N-containing heterocyclic derivatives through medicinal chemistry make these heterocyclic compounds known as essential scaffolds for the design and development of anticancer agents. Uncontrolled cell proliferation with metastasis remains a leading cause of global mortality from cancer. Enzyme binding sites interact with compounds with N-heterocycle to inhibit critical processes in cancer cells. The relative ease of synthesis, selective penetration, and low toxicity of these compounds make them desirable for use as a source of new therapeutic discoveries (over 90% of new therapeutic discoveries with approximately 65% of FDA-approved anticancer drugs (2010-2015). Focusing on selectivity, bioavailability, and low toxicity, this article compares the latest advancements in anticancer drug discovery, emphasizing the significance of SAR analysis in enhancing potency, efficacy, and development of N-heterocycle-based anticancer agents to overcome drug resistance.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968335169250107180240
2025-01-20
2025-07-15
Loading full text...

Full text loading...

References

  1. Mehra A. Sharma V. Verma A. Venugopal S. Mittal A. Singh G. Kaur B. Indole derived anticancer agents. ChemistrySelect 2022 7 34 e202202361 10.1002/slct.202202361
    [Google Scholar]
  2. Venugopal S. Sharma V. Mehra A. Singh I. Singh G. DNA intercalators as anticancer agents. Chem. Biol. Drug Des. 2022 100 4 580 598 10.1111/cbdd.14116 35822451
    [Google Scholar]
  3. Nagai H. Kim Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017 9 3 448 451 10.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Ma X. Yu H. Global burden of cancer. Yale J. Biol. Med. 2006 79 3-4 85 94 17940618
    [Google Scholar]
  6. Ali I. Lone M. Al-Othman Z. Al-Warthan A. Sanagi M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets 2015 16 7 711 734 10.2174/1389450116666150309115922 25751009
    [Google Scholar]
  7. Arora P. Arora V. Lamba H. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 3 9 2947
    [Google Scholar]
  8. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  9. Lang D. K. Kaur R. Arora R. Saini B. Arora S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anti-Cancer Agents Med. Chem. 2020 20 18 2150 2168
    [Google Scholar]
  10. Hosseinzadeh Z. Ramazani A. Razzaghi-Asl N. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem. 2018 22 23 2256 2279 10.2174/1385272822666181008142138
    [Google Scholar]
  11. Pearce S. The importance of heterocyclic compounds in anti-cancer drug design. Drug Discovery 2017 20 66 70
    [Google Scholar]
  12. Kinghorn A.D. De Blanco E.J.C. Lucas D.M. Rakotondraibe H.L. Orjala J. Soejarto D.D. Oberlies N.H. Pearce C.J. Wani M.C. Stockwell B.R. Burdette J. Swanson S.M. Fuchs J.R. Phelps M.A. Xu L. Zhang X. Shen Y.Y. Discovery of anticancer agents of diverse natural origin. Anticancer Res. 2016 36 11 5623 5638 10.21873/anticanres.11146 27793884
    [Google Scholar]
  13. Kumar D. Kumar Jain S. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem. 2016 23 38 4338 4394 10.2174/0929867323666160809093930 27516198
    [Google Scholar]
  14. Omar A. Review article; Anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulfur heteroatoms. Al-Azhar Journal of Pharmaceutical Sciences 2020 62 2 39 54 10.21608/ajps.2020.118375
    [Google Scholar]
  15. Amin A. Qadir T. Sharma P.K. Jeelani I. Abe H. A review on the medicinal and industrial applications of N-containing heterocycles. Open Med. Chem. J. 2022 16 1 e187410452209010 10.2174/18741045‑v16‑e2209010
    [Google Scholar]
  16. Kumar A. Singh A.K. Singh H. Vijayan V. Kumar D. Naik J. Thareja S. Yadav J.P. Pathak P. Grishina M. Verma A. Khalilullah H. Jaremko M. Emwas A.H. Kumar P. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective. Pharmaceuticals 2023 16 2 299 10.3390/ph16020299 37259442
    [Google Scholar]
  17. Ettahiri W. Saber M. Ouzrour Z. Lahmidi S. Salim R. Adardour M. Bouyahya A. Baouid A. Essassi E.M. Ramli Y. Taleb M. Recent advances in the development of nitrogen containing heterocyclic compounds as anticancer agents: A review. Mor. J. Heterocycl. Chem. 2023 22 2 26 60
    [Google Scholar]
  18. Zhang Y.F. Yin Y.K. Zhang H. Han Y.F. Metal N-heterocyclic carbene complexes as potential metallodrugs in antitumor therapy. Coord. Chem. Rev. 2024 514 215941 10.1016/j.ccr.2024.215941
    [Google Scholar]
  19. Zhang X. Fang X. Gao Z. Chen W. Tao F. Cai P. Yuan H. Shu Y. Xu Q. Sun Y. Gu Y. Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity. Anticancer Drugs 2014 25 2 204 211 10.1097/CAD.0000000000000033 24135499
    [Google Scholar]
  20. Hill B.G. Kota V.K. Khoury H.J. Bosutinib: A third generation tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia. Expert Rev. Anticancer Ther. 2014 14 7 765 770 10.1586/14737140.2014.924400 24875651
    [Google Scholar]
  21. Matulonis U.A. An oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J. Clin. Oncol. 2009 27 33 5601 5606
    [Google Scholar]
  22. Fujii Y. Amano M. Seriu T. Pharmacological properties and clinical efficacy of dasatinib hydrate (Sprycel®), an anticancer drug for chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Nippon Yakurigaku Zasshi 2009 134 3 159 167 10.1254/fpj.134.159 19749489
    [Google Scholar]
  23. Pandey P. Dureja H. Erlotinib: A targeted anticancer drug. Curr. Cancer Ther. Rev. 2017 13 1 10.2174/1573394713666170522181615
    [Google Scholar]
  24. Vansteenkiste J.F. Gefitinib (Iressa®): A novel treatment for non-small cell lung cancer. Expert Rev. Anticancer Ther. 2004 4 1 5 17 10.1586/14737140.4.1.5 14748652
    [Google Scholar]
  25. Goswami D. Gurule S. Lahiry A. Anand A. Khuroo A. Monif T. Clinical development of imatinib: An anticancer drug. Future Sci. OA 2016 2 1 FSO92 10.4155/fso.15.92 28031942
    [Google Scholar]
  26. Dogan-Topal B. Bozal-Palabiyik B. Ozkan S.A. Uslu B. Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques. Sens. Actuators B Chem. 2014 194 185 194 10.1016/j.snb.2013.12.088
    [Google Scholar]
  27. Aversa C. Leone F. Zucchini G. Serini G. Geuna E. Milani A. Valdembri D. Martinello R. Montemurro F. Linifanib: current status and future potential in cancer therapy. Expert Rev. Anticancer Ther. 2015 15 6 677 687 10.1586/14737140.2015.1042369 25936222
    [Google Scholar]
  28. Abdelgalil A.A. Alkahtani H.M. Al-Jenoobi F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019 44 239 266 10.1016/bs.podrm.2018.11.003 31029219
    [Google Scholar]
  29. Fields J.A. Metcalf J. Overk C. Adame A. Spencer B. Wrasidlo W. Florio J. Rockenstein E. He J.J. Masliah E. The anticancer drug sunitinib promotes autophagyand protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration. J. Neurovirol. 2017 23 2 290 303 10.1007/s13365‑016‑0502‑z 28105557
    [Google Scholar]
  30. De Luca A. Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs 2010 13 9 636 645 20799147
    [Google Scholar]
  31. Yusefi M. Shameli K. Jahangirian H. Teow S.Y. Umakoshi H. Saleh B. Rafiee-moghaddam R. Webster T.J. The potential anticancer activity of 5-fluorouracil loaded in cellulose fibers isolated from rice straw. Int. J. Nanomedicine 2020 15 5417 5432 10.2147/IJN.S250047 32801697
    [Google Scholar]
  32. Škubník J. Pavlíčková V.S. Ruml T. Rimpelová S. Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology 2021 10 9 849 10.3390/biology10090849 34571726
    [Google Scholar]
  33. Alam M.M. Naeem M. Khan M.M.A. Uddin M. Vincristine and vinblastine anticancer catharanthus alkaloids: Pharmacological applications and strategies for yield improvement. Catharanthus roseus. Cham Springer International Publishing 2017 277 307 10.1007/978‑3‑319‑51620‑2_11
    [Google Scholar]
  34. Fujita K. Kubota Y. Ishida H. Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 2015 21 43 12234 12248 10.3748/wjg.v21.i43.12234 26604633
    [Google Scholar]
  35. Li F. Jiang T. Li Q. Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017 7 12 2350 2394 29312794
    [Google Scholar]
  36. Venditto V.J. Simanek E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm. 2010 7 2 307 349 10.1021/mp900243b 20108971
    [Google Scholar]
  37. Reis-Mendes A. Alves M. Carvalho F. Remião F. Bastos M.L. Costa V.M. Pixantrone, a new anticancer drug with the same old cardiac problems? An in vitro study with differentiated and non-differentiated H9c2 cells. Interdiscip. Toxicol. 2018 11 1 13 21 10.2478/intox‑2018‑0002 30181708
    [Google Scholar]
  38. El-Subbagh H.I. Al-Badr A.A. Cytarabine. Profiles Drug Subst. Excip. Relat. Methodol. 2009 34 37 113 10.1016/S1871‑5125(09)34002‑9 22469172
    [Google Scholar]
  39. Yaswanatha Kumar N.L. Bharathi K.K.N. Mudgal J. VasanthaRaju S.G. Manohara Reddy S.A. Synthesis, characterization of novel Sesamol substituted with thiazolidin-4-one derivatives and their evaluation for anti-oxidant and anti-cancer activities. Results in Chemistry 2021 3 100095 10.1016/j.rechem.2020.100095
    [Google Scholar]
  40. Puxeddu M. Shen H. Bai R. Coluccia A. Nalli M. Mazzoccoli C. Da Pozzo E. Cavallini C. Martini C. Orlando V. Biagioni S. Mazzoni C. Coluccia A.M.L. Hamel E. Liu T. Silvestri R. La Regina G. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies. Eur. J. Med. Chem. 2020 185 111828 10.1016/j.ejmech.2019.111828 31727471
    [Google Scholar]
  41. Rostom S.A.F. Faidallah H.M. Radwan M.F. Badr M.H. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014 76 170 181 10.1016/j.ejmech.2014.02.027 24583356
    [Google Scholar]
  42. El-Sherief H.A.M. Youssif B.G.M. Bukhari S.N.A. Abdel-Aziz M. Abdel-Rahman H.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem. 2018 76 314 325 10.1016/j.bioorg.2017.12.013 29227915
    [Google Scholar]
  43. Harras M.F. Sabour R. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem. 2018 78 149 157 10.1016/j.bioorg.2018.03.014 29567429
    [Google Scholar]
  44. El-Adl K. El-Helby A.A. Sakr H. Eissa I.H. El-Hddad S.S.A. M I A Shoman F. Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem. 2020 102 104059 10.1016/j.bioorg.2020.104059 32653608
    [Google Scholar]
  45. Dai H. Ge S. Guo J. Chen S. Huang M. Yang J. Sun S. Ling Y. Shi Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem. 2018 143 1066 1076 10.1016/j.ejmech.2017.11.098 29232583
    [Google Scholar]
  46. La Regina G. Bai R. Coluccia A. Famiglini V. Pelliccia S. Passacantilli S. Mazzoccoli C. Ruggieri V. Sisinni L. Bolognesi A. Rensen W.M. Miele A. Nalli M. Alfonsi R. Di Marcotullio L. Gulino A. Brancale A. Novellino E. Dondio G. Vultaggio S. Varasi M. Mercurio C. Hamel E. Lavia P. Silvestri R. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem. 2014 57 15 6531 6552 10.1021/jm500561a 25025991
    [Google Scholar]
  47. Alsayari A. Asiri Y.I. Muhsinah A.B. Hassan M.Z. Anticolon cancer properties of pyrazole derivatives acting through xanthine oxidase inhibition. J. Oncol. 2021 2021 1 1 5 10.1155/2021/5691982 34326873
    [Google Scholar]
  48. Ashourpour M. Mostafavi Hosseini F. Amini M. Saeedian Moghadam E. Kazerouni F. Arman S.Y. Shahsavari Z. Pyrazole derivatives induce apoptosis via ROS generation in the triple negative breast cancer cells, MDA-MB-468. Asian Pac. J. Cancer Prev. 2021 22 7 2079 2087 10.31557/APJCP.2021.22.7.2079 34319030
    [Google Scholar]
  49. Şenkardeş S. Türe A. Ekrek S. Durak A.T. Abbak M. Çevik Ö. Kaşkatepe B. Küçükgüzel İ. Güniz Küçükgüzel Ş. Novel 2,6-disubstituted pyridine hydrazones: Synthesis, anticancer activity, docking studies and effects on caspase-3-mediated apoptosis. J. Mol. Struct. 2021 1223 128962 10.1016/j.molstruc.2020.128962
    [Google Scholar]
  50. Farag A.K. Hassan A.H.E. Chung K.S. Lee J.H. Gil H.S. Lee K.T. Roh E.J. Diarylurea derivatives comprising 2,4-diarylpyrimidines: Discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorg. Chem. 2020 103 104121 10.1016/j.bioorg.2020.104121 32745753
    [Google Scholar]
  51. Kumar B. Sharma P. Gupta V.P. Khullar M. Singh S. Dogra N. Kumar V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem. 2018 78 130 140 10.1016/j.bioorg.2018.02.027 29554587
    [Google Scholar]
  52. Kahriman N. Serdaroğlu V. Peker K. Aydın A. Usta A. Fandaklı S. Yaylı N. Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives. Bioorg. Chem. 2019 83 580 594 10.1016/j.bioorg.2018.10.068 30471580
    [Google Scholar]
  53. Malarz K. Zych D. Gawecki R. Kuczak M. Musioł R. Mrozek-Wilczkiewicz A. New derivatives of 4′-phenyl-2,2′:6′,2″-terpyridine as promising anticancer agents. Eur. J. Med. Chem. 2021 212 113032 113032 10.1016/j.ejmech.2020.113032 33261897
    [Google Scholar]
  54. Elmeligie S. Ahmed E.M. Abuel-Maaty S.M. Zaitone S.A.B. Mikhail D.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity. Chem. Pharm. Bull. 2017 65 3 236 247 10.1248/cpb.c16‑00532 28250345
    [Google Scholar]
  55. Sabt A. Eldehna W.M. Al-Warhi T. Alotaibi O.J. Elaasser M.M. Suliman H. Abdel-Aziz H.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights. J. Enzyme Inhib. Med. Chem. 2020 35 1 1616 1630 10.1080/14756366.2020.1806259 32781872
    [Google Scholar]
  56. Murty M.S.R. Rao B.R. Ram K.R. Yadav J.S. Antony J. Anto R.J. Synthesis and preliminary evaluation activity studies of novel 4-(aryl/heteroaryl-2-ylmethyl)-6-phenyl-2-[3-(4-substituted-piperazine-1-yl)propyl]pyridazin-3(2H)-one derivatives as anticancer agents. Med. Chem. Res. 2012 21 10 3161 3169 10.1007/s00044‑011‑9851‑6
    [Google Scholar]
  57. Boraei A.T.A. Eltamany E.H. Ali I.A.I. Gebriel S.M. Nafie M.S. Synthesis of new substituted pyridine derivatives as potent anti-liver cancer agents through apoptosis induction: In vitro, in vivo, and in silico integrated approaches. Bioorg. Chem. 2021 111 104877 104877 10.1016/j.bioorg.2021.104877 33839579
    [Google Scholar]
  58. Madia V.N. Nicolai A. Messore A. De Leo A. Ialongo D. Tudino V. Saccoliti F. De Vita D. Scipione L. Artico M. Taurone S. Taglieri L. Di Santo R. Scarpa S. Costi R. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules 2021 26 3 771 10.3390/molecules26030771 33540875
    [Google Scholar]
  59. El-Sharief A.M.S. Ammar Y.A. Belal A. El-Sharief M.A.M.S. Mohamed Y.A. Mehany A.B.M. Elhag Ali G.A.M. Ragab A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem. 2019 85 399 412 10.1016/j.bioorg.2019.01.016 30665034
    [Google Scholar]
  60. He Z. Qiao H. Yang F. Zhou W. Gong Y. Zhang X. Wang H. Zhao B. Ma L. Liu H. Zhao W. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur. J. Med. Chem. 2019 184 111764 10.1016/j.ejmech.2019.111764 31614257
    [Google Scholar]
  61. Iacopetta D. Catalano A. Ceramella J. Barbarossa A. Carocci A. Fazio A. La Torre C. Caruso A. Ponassi M. Rosano C. Franchini C. Sinicropi M.S. Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives. Bioorg. Chem. 2020 105 104440 10.1016/j.bioorg.2020.104440 33217633
    [Google Scholar]
  62. Metwally N.H. Deeb E.A. Synthesis, anticancer assessment on human breast, liver and colon carcinoma cell lines and molecular modeling study using novel pyrazolo[4,3-c]pyridine derivatives. Bioorg. Chem. 2018 77 203 214 10.1016/j.bioorg.2017.12.032 29367077
    [Google Scholar]
  63. Abdel-Maksoud M.S. Ali E.M.H. Ammar U.M. Mersal K.I. Yoo K.H. Oh C.H. Design and synthesis of novel pyrrolo[2,3-b]pyridine derivatives targeting V600EBRAF. Bioorg. Med. Chem. 2020 28 11 115493 10.1016/j.bmc.2020.115493 32340792
    [Google Scholar]
  64. Wang R. Chen Y. Yang B. Yu S. Zhao X. Zhang C. Hao C. Zhao D. Cheng M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg. Chem. 2020 94 103474 10.1016/j.bioorg.2019.103474 31859010
    [Google Scholar]
  65. Romagnoli R. Baraldi P.G. Prencipe F. Oliva P. Baraldi S. Salvador M.K. Lopez-Cara L.C. Bortolozzi R. Mattiuzzo E. Basso G. Viola G. Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents. Eur. J. Med. Chem. 2017 134 258 270 10.1016/j.ejmech.2017.03.089 28419928
    [Google Scholar]
  66. Sreenivasulu R. Tej M.B. Jadav S.S. Sujitha P. Kumar C.G. Raju R.R. Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues. J. Mol. Struct. 2020 1208 127875 10.1016/j.molstruc.2020.127875
    [Google Scholar]
  67. Noolvi M.N. Patel H.M. Bhardwaj V. Chauhan A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem. 2011 46 6 2327 2346 10.1016/j.ejmech.2011.03.015 21458891
    [Google Scholar]
  68. Liu Q.Q. Lu K. Zhu H.M. Kong S.L. Yuan J.M. Zhang G.H. Chen N.Y. Gu C.X. Pan C.X. Mo D.L. Su G.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur. J. Med. Chem. 2019 165 293 308 10.1016/j.ejmech.2019.01.004 30685528
    [Google Scholar]
  69. Fayed E.A. Ammar Y.A. Saleh M.A. Bayoumi A.H. Belal A. Mehany A.B.M. Ragab A. Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors. J. Mol. Struct. 2021 1236 130317 10.1016/j.molstruc.2021.130317
    [Google Scholar]
  70. Ghanbarimasir Z. Bekhradnia A. Morteza-Semnani K. Rafiei A. Razzaghi-Asl N. Kardan M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 194 21 35 10.1016/j.saa.2017.12.063 29310028
    [Google Scholar]
  71. Piras S. Loriga M. Paglietti G. Quinoxaline chemistry. Part XVII. Methyl [4-(substituted 2-quinoxalinyloxy) phenyl] acetates and ethyl N-[4-(substituted 2-quinoxalinyloxy) phenyl] acetyl glutamates analogs of methotrexate: Synthesis and evaluation of in vitro anticancer activity. Farmaco 2004 59 3 185 194 10.1016/j.farmac.2003.11.014 14987981
    [Google Scholar]
  72. Saruengkhanphasit R. Butkinaree C. Ornnork N. Lirdprapamongkol K. Niwetmarin W. Svasti J. Ruchirawat S. Eurtivong C. Identification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure–activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study. Bioorg. Chem. 2021 110 104795 104795 10.1016/j.bioorg.2021.104795 33730670
    [Google Scholar]
  73. He Z.X. Huo J.L. Gong Y.P. An Q. Zhang X. Qiao H. Yang F.F. Zhang X.H. Jiao L.M. Liu H.M. Ma L.Y. Zhao W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur. J. Med. Chem. 2021 210 112970 112970 10.1016/j.ejmech.2020.112970 33153765
    [Google Scholar]
  74. Karthikeyan C. Solomon V.R. Lee H. Trivedi P. Synthesis and biological evaluation of 2-(phenyl)-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents. Arab. J. Chem. 2017 10 S1788 S1794 10.1016/j.arabjc.2013.07.003
    [Google Scholar]
  75. Wang F.Q. Yang H. He B. Jia Y.K. Meng S.Y. Zhang C. Liu H.M. Liu F.W. A novel domino approach for synthesis of indolyl tetrahydropyrano[4,3-c]pyrazole derivatives as anticancer agents. Tetrahedron 2016 72 38 5769 5775 10.1016/j.tet.2016.07.078
    [Google Scholar]
  76. Argyros O. Lougiakis N. Kouvari E. Papafotika A. Raptopoulou C.P. Psycharis V. Christoforidis S. Pouli N. Marakos P. Tamvakopoulos C. Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity. Eur. J. Med. Chem. 2017 126 954 968 10.1016/j.ejmech.2016.12.025 28006668
    [Google Scholar]
  77. Geng P.F. Wang C.C. Li Z.H. Hu X.N. Zhao T.Q. Fu D.J. Zhao B. Yu B. Liu H.M. Design, synthesis and preliminary biological evaluation of 5,8-dihydropteridine-6,7-diones that induce apoptosis and suppress cell migration. Eur. J. Med. Chem. 2018 143 1959 1967 10.1016/j.ejmech.2017.11.009 29133051
    [Google Scholar]
  78. Ji X. Xue S. Zhan Y. Shen J. Wu L. Jin J. Wang Z. Li Z. Design, synthesis and antiproliferative activity of a novel class of indole-2-carboxylate derivatives. Eur. J. Med. Chem. 2014 83 409 418 10.1016/j.ejmech.2014.05.043 24996136
    [Google Scholar]
  79. Baytas S.N. Inceler N. Yılmaz A. Olgac A. Menevse S. Banoglu E. Hamel E. Bortolozzi R. Viola G. Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem. 2014 22 12 3096 3104 10.1016/j.bmc.2014.04.027 24816066
    [Google Scholar]
  80. Metwally N.H. Mohamed M.S. Ragb E.A. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo[1,5-a]pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers. Bioorg. Chem. 2019 88 102929 102929 10.1016/j.bioorg.2019.102929 31015179
    [Google Scholar]
  81. Hassan A.Y. Sarg M.T. El-Sebaey S.A. Synthesis and antitumor evaluation of some new derivatives and fused heterocyclic compounds derived from thieno[2,3‐ b ]pyridine: Part 2. J. Heterocycl. Chem. 2020 57 2 694 715 10.1002/jhet.3810
    [Google Scholar]
  82. Song Y. Feng S. Feng J. Dong J. Yang K. Liu Z. Qiao X. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II. Eur. J. Med. Chem. 2020 200 112459 10.1016/j.ejmech.2020.112459 32502865
    [Google Scholar]
  83. Eissa I.H. El-Naggar A.M. El-Hashash M.A. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg. Chem. 2016 67 43 56 10.1016/j.bioorg.2016.05.006 27253830
    [Google Scholar]
  84. Magar T.B.T. Seo S.H. Kadayat T.M. Jo H. Shrestha A. Bist G. Katila P. Kwon Y. Lee E.S. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents. Bioorg. Med. Chem. 2018 26 8 1909 1919 10.1016/j.bmc.2018.02.035 29510948
    [Google Scholar]
  85. Youssif B.G.M. Abdelrahman M.H. Abdelazeem A.H. abdelgawad M.A. Ibrahim H.M. Salem O.I.A. Mohamed M.F.A. Treambleau L. Bukhari S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem. 2018 146 260 273 10.1016/j.ejmech.2018.01.042 29407956
    [Google Scholar]
  86. Alsaif N.A. Dahab M.A. Alanazi M.M. Obaidullah A.J. Al-Mehizia A.A. Alanazi M.M. Aldawas S. Mahdy H.A. Elkady H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg. Chem. 2021 110 104807 10.1016/j.bioorg.2021.104807 33721808
    [Google Scholar]
  87. Zhuang S.H. Lin Y.C. Chou L.C. Hsu M.H. Lin H.Y. Huang C.H. Lien J.C. Kuo S.C. Huang L.J. Synthesis and anticancer activity of 2,4-disubstituted furo[3,2-b]indole derivatives. Eur. J. Med. Chem. 2013 66 466 479 10.1016/j.ejmech.2013.06.012 23831809
    [Google Scholar]
  88. Khan I. Garikapati K.R. Shaik A.B. Makani V.K.K. Rahim A. Shareef M.A. Reddy V.G. Pal-Bhadra M. Kamal A. Kumar C.G. Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c ] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis. Eur. J. Med. Chem. 2018 144 104 115 10.1016/j.ejmech.2017.12.010 29268127
    [Google Scholar]
  89. Wang N.Y. Xu Y. Xiao K.J. Zuo W.Q. Zhu Y.X. Hu R. Wang W.L. Shi Y.J. Yu L.T. Liu Z.H. Design, synthesis, and biological evaluation of 4,5-dihydro-[1,2,4]triazolo[4,3-f]pteridine derivatives as novel dual-PLK1/BRD4 inhibitors. Eur. J. Med. Chem. 2020 191 112152 112152 10.1016/j.ejmech.2020.112152 32088495
    [Google Scholar]
  90. El-Metwally S.A. Khalil A.K. El-Sayed W.M. Design, molecular modeling and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as inhibitors of topoisomerase II. Bioorg. Chem. 2020 94 103492 103492 10.1016/j.bioorg.2019.103492 31864673
    [Google Scholar]
  91. Patel A.S. Jain V. Rao V.N. Lin Y.W. Shah A. Lai K.C. Su T.L. Lee T.C. Design, synthesis and antitumour evaluation of pyrrolo[1,2-f]-phenanthridine and dibenzo[f,h]pyrrolo[1,2-b]isoquinoline derivatives. Eur. J. Med. Chem. 2020 202 112516 10.1016/j.ejmech.2020.112516 32622270
    [Google Scholar]
  92. Tseng C.H. Chen Y.R. Tzeng C.C. Liu W. Chou C.K. Chiu C.C. Chen Y.L. Discovery of indeno[1,2- b ]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016 108 258 273 10.1016/j.ejmech.2015.11.031 26686931
    [Google Scholar]
  93. Alanazi M.M. Mahdy H.A. Alsaif N.A. Obaidullah A.J. Alkahtani H.M. Al-Mehizia A.A. Alsubaie S.M. Dahab M.A. Eissa I.H. New bis([1,2,4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg. Chem. 2021 112 104949 10.1016/j.bioorg.2021.104949 34023640
    [Google Scholar]
  94. Palluotto F. Sosic A. Pinato O. Zoidis G. Catto M. Sissi C. Gatto B. Carotti A. Quinolino[3,4- b ]quinoxalines and pyridazino[4,3- c ]quinoline derivatives: Synthesis, inhibition of topoisomerase IIα, G-quadruplex binding and cytotoxic properties. Eur. J. Med. Chem. 2016 123 704 717 10.1016/j.ejmech.2016.07.063 27521587
    [Google Scholar]
  95. Shchekotikhin A.E. Glazunova V.A. Dezhenkova L.G. Luzikov Y.N. Buyanov V.N. Treshalina H.M. Lesnaya N.A. Romanenko V.I. Kaluzhny D.N. Balzarini J. Agama K. Pommier Y. Shtil A.A. Preobrazhenskaya M.N. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones. Eur. J. Med. Chem. 2014 86 797 805 10.1016/j.ejmech.2014.09.021 25244612
    [Google Scholar]
  96. Patel O.P.S. Arun A. Singh P.K. Saini D. Karade S.S. Chourasia M.K. Konwar R. Yadav P.P. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur. J. Med. Chem. 2019 167 226 244 10.1016/j.ejmech.2019.02.003 30772606
    [Google Scholar]
  97. Chen T.C. Yu D.S. Chen S.J. Chen C.L. Lee C.C. Hsieh Y.Y. Chang L.C. Guh J.H. Lin J.J. Huang H.S. Design, synthesis and biological evaluation of tetracyclic azafluorenone derivatives with topoisomerase I inhibitory properties as potential anticancer agents. Arab. J. Chem. 2019 12 8 4348 4364 10.1016/j.arabjc.2016.06.014
    [Google Scholar]
  98. Gu W. Wang S. Jin X. Zhang Y. Hua D. Miao T. Tao X. Wang S. Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents. Molecules 2017 22 7 1154 10.3390/molecules22071154 28696365
    [Google Scholar]
  99. Chate A.V. Kamdi S.P. Bhagat A.N. Jadhav C.K. Nipte A. Sarkate A.P. Tiwari S.V. Gill C.H. Design, synthesis and SAR study of novel spiro [Pyrimido[5,4‐b]Quinoline‐10,5′‐Pyrrolo[2,3‐d]Pyrimidine] derivatives as promising anticancer agents. J. Heterocycl. Chem. 2018 55 10 2297 2302 10.1002/jhet.3286
    [Google Scholar]
  100. Grishko V.V. Tolmacheva I.A. Nebogatikov V.O. Galaiko N.V. Nazarov A.V. Dmitriev M.V. Ivshina I.B. Preparation of novel ring-A fused azole derivatives of betulin and evaluation of their cytotoxicity. Eur. J. Med. Chem. 2017 125 629 639 10.1016/j.ejmech.2016.09.065 27721148
    [Google Scholar]
  101. Kim D.K. Ryu D.H. Lee J.Y. Lee N. Kim Y.W. Kim J.S. Chang K. Im G.J. Kim T.K. Choi W.S. Synthesis and biological evaluation of novel A-ring modified hexacyclic camptothecin analogues. J. Med. Chem. 2001 44 10 1594 1602 10.1021/jm0004751 11334569
    [Google Scholar]
  102. Guo J. Yang Y. Wang N. Liu Z. Synthesis and cytotoxicity screening of derivatives of the simplified ecteinascidin pentacyclic skeleton as anticancer agents. Tetrahedron Lett. 2018 59 33 3202 3205 10.1016/j.tetlet.2018.07.027
    [Google Scholar]
  103. Li J.F. Huang R.Z. Yao G.Y. Ye M.Y. Wang H.S. Pan Y.M. Xiao J.T. Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents. Eur. J. Med. Chem. 2014 86 175 188 10.1016/j.ejmech.2014.08.003 25151580
    [Google Scholar]
  104. Wang R. Li Y. Dehaen W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur. J. Med. Chem. 2020 207 112737 112737 10.1016/j.ejmech.2020.112737 32866757
    [Google Scholar]
  105. Kadela-Tomanek M. Bębenek E. Chrobak E. Marciniec K. Latocha M. Kuśmierz D. Jastrzębska M. Boryczka S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. Eur. J. Med. Chem. 2019 177 302 315 10.1016/j.ejmech.2019.05.063 31158746
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968335169250107180240
Loading
/content/journals/ccb/10.2174/0122127968335169250107180240
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SAR ; cytotoxicity ; cell lines ; potency ; in vitro ; heterocyclic derivatives
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test