Skip to content
2000
image of In-vitro and In-silico α-amylase Inhibition Activity of Carlina Oxide and Aplotaxene Isolated From the Roots of Carthamus caeruleus and Rhaponticum acaule

Abstract

Background

Numerous natural products have been successfully developed for clinical use in the treatment of human diseases in almost every therapeutic area.

Objectives

This work aimed to assess the and α-amylase inhibition activities of carlina oxide and aplotaxene, isolated from the roots of and respectively.

Methods

The essential oil from roots was obtained using a Clevenger-type apparatus, and the hexanoic extract from the roots of was obtained through maceration. Major components of each plant were separated column chromatography. The α-amylase inhibition activity was evaluated using porcine pancreatic α-amylase, while the molecular docking study was conducted using the Molecular Operating Environment (MOE) with three types of α-amylase: human salivary, pancreatic α-amylase and α-amylase (PDB: 1Q4N, 5EMY, 7P4W respectively).

Results

The α-amylase inhibition results for the essential oil, the hexanoic extract, carlina oxide and aplotaxene showed that carlina oxide exhibited significant activity with IC of 0.42 mg/mL. However, the study showed no interaction between aplotaxene and the three α-amylase enzymes, whereas carlina oxide demonstrated one pi-cation interaction with 5EMY with the amino acid TYR 62 at a distance of 4.70 Å and two pi-H interactions with 7P4W with the amino acid LYS 383 at distances of 4.31 and 4 .03 Å.

Conclusion

In conclusion, carlina oxide has the potential to serve as an alternative agent for α-amylase inhibition, contributing to the reduction of postprandial hyperglycemia.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/012212796831732824091804122
2024-10-02
2024-11-22
Loading full text...

Full text loading...

References

  1. Nair S.S. Kavrekar V. Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013 3 1 128 132
    [Google Scholar]
  2. Liamis G. Liberopoulos E. Barkas F. Elisaf M. Diabetes mellitus and electrolyte disorders. World J. Clin. Cases 2014 2 10 488 496 10.12998/wjcc.v2.i10.488 25325058
    [Google Scholar]
  3. Vss P. Adapa D. Vana D.R. Choudhury A. Asadullah J. Chatterjee A. Nutritional components relevant to type-2-diabetes: Dietary sources, metabolic functions and glycaemic effects. J. Res. Med. Dent. 2018 6 5 52 75
    [Google Scholar]
  4. Burke J.P. Williams K. Narayan K.M.V. Leibson C. Haffner S.M. Stern M.P. A population perspective on diabetes prevention: Whom should we target for preventing weight gain? Diabetes Care 2003 26 7 1999 2004 10.2337/diacare.26.7.1999 12832302
    [Google Scholar]
  5. Mukhtar Y. Galalain A. Yunusa U. A modern overview on diabetes mellitus: A chronic endocrine disorder. Eur J Biol. 2020 5 2 1 14 10.47672/ejb.409
    [Google Scholar]
  6. Alberti K.G.M.M. Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med. 1998 15 7 539 553 10.1002/(SICI)1096‑9136(199807)15:7<539:AID‑DIA668>3.0.CO;2‑S 9686693
    [Google Scholar]
  7. Nickavar B. Abolhasani L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from salvia virgata. Iran. J. Pharm. Res. 2013 12 1 57 61 24250572
    [Google Scholar]
  8. Ceriello A. Postprandial hyperglycemia and diabetes complications: Is it time to treat? Diabetes 2005 54 1 1 7 10.2337/diabetes.54.1.1 15616004
    [Google Scholar]
  9. Bray G.A. Greenway F.L. Current and potential drugs for treatment of obesity. Endocr. Rev. 1999 20 6 805 875 10.1210/edrv.20.6.0383 10605627
    [Google Scholar]
  10. Calixto J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019 91 Suppl. 3 e20190105 10.1590/0001‑3765201920190105 31166478
    [Google Scholar]
  11. Davies J. Section 3 the advent of modern microbiology-in praise of antibiotics. ASM 1999 65 5 304 310
    [Google Scholar]
  12. Singh S.B. Pelaez F. Biodiversity, chemical diversity and drug discovery. Prog. Drug Res. 2008 65 141 174
    [Google Scholar]
  13. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012 75 3 311 335 10.1021/np200906s 22316239
    [Google Scholar]
  14. Karima S. Farida S. Mihoub Z.M. Antimicrobial activity of an algerian medicinal plant. Carthamus Caeruleus L. PHCOG COMMN 2013 3 4 71
    [Google Scholar]
  15. Ouda A. N. Fatiha M. Sadia M. Zohra S. F. Noureddine D. In vivo anti-inflammatory activity of aqueous extract of Carthamus caeruleus L. rhizome against carrageenan-induced inflammation in mice. Jordan J. Biol. 2021 14 3
    [Google Scholar]
  16. Meddour R. Meddour-Sahar O. Medicinal plants and their traditional uses in kabylia (TIZI OUZOU, ALGERIA). Arab J Med Aromat Plants 2015 1 2 137 151
    [Google Scholar]
  17. Mami I.R. Merad-Boussalah N. El Amine Dib M. Tabti B. Costa J. Muselli A. Chemical variability and antioxidant activities of the essential oils of the aerial parts of ammoides verticillata and the roots of carthamus caeruleus and their synergistic effect in combination. COMB CHEM HIGH T SCR 2021 24 1 71 78 32504498
    [Google Scholar]
  18. Toubane A. Rezzoug S.A. Besombes C. Daoud K. Optimization of accelerated solvent extraction of carthamus caeruleus L. Evaluation of antioxidant and anti-inflammatory activity of extracts. Ind. Crops Prod. 2017 97 620 631 10.1016/j.indcrop.2016.12.002
    [Google Scholar]
  19. Dahmani M. Laoufi R. Selama O. Arab K. Gas chromatography coupled to mass spectrometry characterization, anti-inflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae). Indian J. Pharmacol. 2018 50 3 123 129 10.4103/ijp.IJP_65_17 30166749
    [Google Scholar]
  20. Mami I.R. Belabbes R. Amine Dib M.E. Tabti B. Costa J. Muselli A. Biological activities of carlina oxide isolated from the roots of carthamus caeruleus. J. Nat. Prod. 2020 10 2 145 152
    [Google Scholar]
  21. Benabdesselam S. Guechi E-K. Izza H. Antioxidant, antibacterial and anticoagulant activities of the methanolic extract of rhaponticum acaule fruit growing wild in eastern algeria. Pharm. Lett. 2018 10 1 10
    [Google Scholar]
  22. Benyelles B. Allali H. El Amine Dib M. Djabou N. Tabti B. Costa J. Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques. J. Saudi Chem. Soc. 2014 18 6 972 976 10.1016/j.jscs.2011.12.001
    [Google Scholar]
  23. Mosbah H. Chahdoura H. Kammoun J. Hlila M.B. Louati H. Hammami S. Flamini G. Achour L. Selmi B. Rhaponticum acaule (L) DC essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement. Altern. Med. 2018 18 1 79 10.1186/s12906‑018‑2145‑5 29506517
    [Google Scholar]
  24. Ramasubbu N. Sundar K. Ragunath C. Rafi M.M. Structural studies of a Phe256Trp mutant of human salivary α-amylase: Implications for the role of a conserved water molecule in enzyme activity. Arch. Biochem. Biophys. 2004 421 1 115 124 10.1016/j.abb.2003.10.007 14678792
    [Google Scholar]
  25. Caner S. Zhang X. Jiang J. Chen H.M. Nguyen N.T. Overkleeft H. Brayer G.D. Withers S.G. Glucosyl epi‐cyclophellitol allows mechanism‐based inactivation and structural analysis of human pancreatic α‐amylase. FEBS Lett. 2016 590 8 1143 1151 10.1002/1873‑3468.12143 27000970
    [Google Scholar]
  26. Gorrec F. Bellini D. The FUSION protein crystallization screen. J. Appl. Cryst. 2022 55 2 310 319 10.1107/S1600576722001765 35497656
    [Google Scholar]
  27. Tsyrulneva I. Alagappan P. Liedberg B. Colorimetric detection of salivary a-amylase using maltose as a noncompetitive inhibitor for polysaccharide cleavage. ACS Sens. 2019 4 4 865 873 10.1021/acssensors.8b01343 30895774
    [Google Scholar]
  28. Yadav R. Bhartiya J.P. Verma S.K. Nandkeoliar M.K. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions. J. Clin. Diagn. Res. 2013 7 7 1291 1294 10.7860/JCDR/2013/6016.3120 23998048
    [Google Scholar]
  29. Rines A.K. Sharabi K. Tavares C.D.J. Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat. Rev. Drug Discov. 2016 15 11 786 804 10.1038/nrd.2016.151 27516169
    [Google Scholar]
  30. AL-Ishaq R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  31. Rasouli H. Hosseini-Ghazvini S.M.B. Adibi H. Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017 8 5 1942 1954 10.1039/C7FO00220C 28470323
    [Google Scholar]
  32. Cisneros-Yupanqui M. Lante A. Mihaylova D. Krastanov A.I. Rizzi C. THE A-amylase and A-glucosidase inhibition capacity of grape pomace: A review. Food Bioprocess Technol. 2023 16 4 691 703 10.1007/s11947‑022‑02895‑0 36062030
    [Google Scholar]
  33. Tiwari V.P. Dubey A. Al-Shehri M. Tripathi I.P. Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes. J. Biomol. Struct. Dyn. 2024 42 2 1031 1046 10.1080/07391102.2023.2243336 37545158
    [Google Scholar]
  34. Silva F.M.L. Donega M.A. Cerdeira A.L. Corniani N. Velini E.D. Cantrell C.L. Dayan F.E. Coelho M.N. Shea K. Duke S.O. Roots of the invasive species Carduus nutans L. and C. acanthoides L. produce large amounts of aplotaxene, a possible allelochemical. J. Chem. Ecol. 2014 40 3 276 284 10.1007/s10886‑014‑0390‑8 24557607
    [Google Scholar]
  35. Cerdeira A.L. Silva F.M.L. Donega M.A. Cantrell C.L. Shea K. Duke S.O. Velini E.D. Corniani N. Roots of the invasive species carduus nutans L. and C. acanthoides L. Produce the phytotoxin aplotaxene, a possible allelochemical. Planta Med. 2013 79 10 PB2 10.1055/s‑0033‑1348556
    [Google Scholar]
  36. Benhamidat L. Amine Dib M.E. Bensaid O. Zatla A.T. Keniche A. Ouar I.E. Nassim D. Muselli A. Chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of centaurea acaulis essential oils: Study of the combinatorial activities of aplotaxene with reference standards. J. Essent. Oil-Bear. Plants 2022 25 1 126 146 10.1080/0972060X.2022.2046177
    [Google Scholar]
  37. Semaoui M. Dib M.E.A. Djabou N. Costa J. Muselli A. chemical composition, biological activities and toxicity study of carduncellus pinnatus essential oil from west algeria. Curr. Bioact. Compd. 2022 18 3 e020821195186 10.2174/1573407217666210802113423
    [Google Scholar]
  38. Havlik J. Budesinsky M. Kloucek P. Kokoska L. Valterova I. Vasickova S. Zeleny V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry 2009 70 3 414 418 10.1016/j.phytochem.2008.12.018 19195668
    [Google Scholar]
  39. Semmler F.W. Feldstein J. On the knowledge of the components of essential oils. (on the components of costus root oil). Ber. Dtsch. Chem. Ges. 1914 47 3 2687 2694 10.1002/cber.19140470353
    [Google Scholar]
  40. Binder R.G. Benson M. Haddon W.F. French R.C. Aplotaxene derivatives from Cirsium arvense. Phytochemistry 1992 31 3 1033 1034
    [Google Scholar]
  41. Link P. Roth K. Sporer F. Wink M. Carlina acaulis exhibits antioxidant activity and counteracts ab toxicity in caenorhabditis elegans. Molecules 2016 21 7 871 10.3390/molecules21070871 27384550
    [Google Scholar]
  42. Pavela R. Pavoni L. Bonacucina G. Cespi M. Cappellacci L. Petrelli R. Spinozzi E. Aguzzi C. Zeppa L. Ubaldi M. Desneux N. Canale A. Maggi F. Benelli G. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: microemulsions versus nanoemulsions. J. Pest Sci. 2021 94 3 899 915 10.1007/s10340‑020‑01327‑2
    [Google Scholar]
  43. Đorđević S. Petrović S. Dobrić S. Milenković M. Vučićević D. Žižić S. Kukić J. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Ethnopharmacol. 2007 109 3 458 463 10.1016/j.jep.2006.08.021 17011148
    [Google Scholar]
  44. Saralieva E.N. Petkova N.T. Ivanov I.G. Aneva I.Y. Georgiev V.G. Nikolova K.T. Polyphenolic compounds, triterpenes, carlina oxide, antioxidant activity and carbohydrate profile of different vegetal parts of Carlina Vulgaris L., Carlina acanthifolia all. and Carlina Corymbosa L. TROP. J. Nat. Prod. Res. 2023 7 10 4242 4248
    [Google Scholar]
  45. Saralieva E. Dincheva I. Tumbarski Y. Petkova N. Vilhelmova-Ilieva N. Nikolova I. Simeonova L. Ivanov I. Chemical composition, antibacterial, antiviral, antioxidant, and acetylcholinesterase inhibitory properties of essential oils from carlina acanthifolia all. Roots. J. Essent. Oil-Bear. Plants 2022 25 5 976 986 10.1080/0972060X.2022.2133973
    [Google Scholar]
  46. Achiri R. Benhamidat L. Mami I.R. Dib M.E.A. Aissaoui N. Cherif C.Z. Cherif H.Z. Muselli A. chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the essential oil and its major component (carlina oxide) of carlina hispanica roots from WESTERN ALGERIA. J. Essent. Oil-Bear. Plants 2021 24 5 1113 1124 10.1080/0972060X.2021.2005692
    [Google Scholar]
  47. Stojanović-Radić Z. Čomić L. Radulović N. Blagojević P. Mihajilov-Krstev T. Rajković J. Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharm. Biol. 2012 50 8 933 940 10.3109/13880209.2011.649214 22480199
    [Google Scholar]
  48. Rohleder N. Nater U.M. Determinants of salivary α-amylase in humans and methodological considerations. Psychoneuroendocrinology 2009 34 4 469 485 10.1016/j.psyneuen.2008.12.004 19155141
    [Google Scholar]
  49. Yang Z.M. Lin J. Chen L.H. Zhang M. Chen W.W. Yang X.R. The roles of AMY1 copies and protein expression in human salivary α-amylase activity. Physiol. Behav. 2015 138 173 178 10.1016/j.physbeh.2014.10.037 25446200
    [Google Scholar]
  50. Grigoleit J.S. Kullmann J.S. Oberbeck R. Schedlowski M. Engler H. Salivary α-amylase response to endotoxin administration in humans. Psychoneuroendocrinology 2013 38 9 1819 1823 10.1016/j.psyneuen.2013.01.003 23394872
    [Google Scholar]
  51. Arhakis A. Karagiannis V. Kalfas S. Salivary alpha-amylase activity and salivary flow rate in young adults. Open Dent. J. 2013 7 1 7 15 10.2174/1874210601307010007 23524385
    [Google Scholar]
  52. Tiwari S. Srivastava R. Singh C. Shukla K. Singh R. Singh P. Singh R. Singh N. Sharma R. Amylases: An overview with special reference to alpha amylase. J GLOBAL BIOSCI 2015 4 1 1886 1901
    [Google Scholar]
  53. Douglas C.W. Enzymic activity of salivary amylase when bound to the surface of oral streptococci oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary a-amylase starch and glucose oligosaccharides protect salivary-type amylase activity at acid PH. Food Chem. 2019 15 274 566 573
    [Google Scholar]
  54. Freitas D. Le Feunteun S. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary α-amylase. Food Chem. 2019 274 274 566 573 10.1016/j.foodchem.2018.09.025 30372980
    [Google Scholar]
  55. Scannapieco F.A. Salivary alpha-amylase: Role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med. 1993 4 3-4 301 307
    [Google Scholar]
  56. Keller P.J. Allan B.J. The protein composition of human pancreatic juice. J. Biol. Chem. 1967 242 2 281 287 10.1016/S0021‑9258(19)81461‑8 6016613
    [Google Scholar]
  57. Date K. Regulatory functions of α-amylase in the small intestine other than starch digestion: α-glucosidase activity, glucose absorption, cell proliferation, and differentiation. IN NEW INSIGHTS INTO METABOLIC SYNDROME; INTECHOPEN 2020
    [Google Scholar]
  58. Asanuma-Date K. Hirano Y. Le N. Sano K. Kawasaki N. Hashii N. Hiruta Y. Nakayama K. Umemura M. Ishikawa K. Sakagami H. Ogawa H. Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 2012 287 27 23104 23118 10.1074/jbc.M111.314658 22584580
    [Google Scholar]
  59. Olaokun O.O. McGaw L.J. Eloff J.N. Naidoo V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complement. Altern. Med. 2013 13 1 94 10.1186/1472‑6882‑13‑94 23641947
    [Google Scholar]
  60. Haguet Q. Le Joubioux F. Chavanelle V. Groult H. Schoonjans N. Langhi C. Michaux A. Otero Y.F. Boisseau N. Peltier S.L. Sirvent P. Maugard T. Inhibitory potential of a-amylase, a-glucosidase, and pancreatic lipase by a formulation of five plant extracts: TOTUM-63. Int. J. Mol. Sci. 2023 24 4 3652 10.3390/ijms24043652 36835060
    [Google Scholar]
  61. Hernández M.S. Rodríguez M.R. Guerra N.P. Rosés R.P. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng. 2006 73 1 93 100 10.1016/j.jfoodeng.2005.01.009
    [Google Scholar]
  62. de Vries R. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl. Microbiol. Biotechnol. 2003 61 1 10 20 10.1007/s00253‑002‑1171‑9 12658510
    [Google Scholar]
  63. Kazim A.R.S. Jiang Y. Li S. He X. Aspergillus nidulans amyg functions as an intracellular a-amylase to promote a-glucan synthesis. Microbiol. Spectr. 2021 9 3 e00644 e21 10.1128/Spectrum.00644‑21 34756063
    [Google Scholar]
  64. Akasaka N. Fujiwara S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2020 52 2 181 197 10.1007/s00726‑019‑02720‑7 30915570
    [Google Scholar]
  65. Ruadrew S. Craft J. Aidoo K. Occurrence of toxigenic Aspergillus spp. and aflatoxins in selected food commodities of Asian origin sourced in the West of Scotland. Food Chem. Toxicol. 2013 55 653 658 10.1016/j.fct.2013.02.001 23416649
    [Google Scholar]
  66. Porfirif M.C. Milatich E.J. Farruggia B.M. Romanini D. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1022 87 92 10.1016/j.jchromb.2016.04.015 27085017
    [Google Scholar]
  67. Bhanja Dey T. Banerjee R. Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal. Agric. Biotechnol. 2015 4 1 83 90 10.1016/j.bcab.2014.10.002
    [Google Scholar]
  68. Ekins S. Mestres J. Testa B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol. 2007 152 1 21 37 10.1038/sj.bjp.0707306 17549046
    [Google Scholar]
  69. Aleksandrov A. Myllykallio H. Advances and challenges in drug design against tuberculosis: Application of in silico approaches. Expert Opin. Drug Discov. 2019 14 1 35 46 10.1080/17460441.2019.1550482 30477360
    [Google Scholar]
  70. Ng K.C.S. Ngabonziza J.C.S. Lempens P. de Jong B.C. van Leth F. Meehan C.J. Bridging the TB data gap: In silico extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data. PeerJ 2019 7 e7564 10.7717/peerj.7564 31523514
    [Google Scholar]
  71. Olokoba A.B. Obateru O.A. Olokoba L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012 27 4 269 273 10.5001/omj.2012.68 23071876
    [Google Scholar]
  72. Aryaeian N. Khorshidi Sedehi S. Arablou T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017 31 1 886 892 10.14196/mjiri.31.134 29951434
    [Google Scholar]
  73. Gholam H.A. Falah H. Sharififar F. Mirtaj A.S. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase. Iranian J. Basic Med. Sci. 2008 11 1 1 9
    [Google Scholar]
  74. Vinholes J. Vizzotto M. Synergisms in alpha-glucosidase inhibition and antioxidant activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts. Pharmacognosy Res. 2017 9 1 101 107 10.4103/0974‑8490.197797 28250662
    [Google Scholar]
  75. Manaharan T. Teng L.L. Appleton D. Ming C.H. Masilamani T. Palanisamy U.D. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chem. 2011 129 4 1355 1361 10.1016/j.foodchem.2011.05.041
    [Google Scholar]
  76. Ogunyemi O.M. Gyebi G.A. Saheed A. Paul J. Nwaneri-Chidozie V. Olorundare O. Adebayo J. Koketsu M. Aljarba N. Alkahtani S. Batiha G.E.S. Olaiya C.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front. Mol. Biosci. 2022 9 866719 10.3389/fmolb.2022.866719 36032689
    [Google Scholar]
  77. Ravi L. In vitro and in silico alpha-amylase inhibition potential (anti-diabetic activity) of pseuderanthemum bicolor (sims) radik. In Vitro 2020 13 12
    [Google Scholar]
/content/journals/ccb/10.2174/012212796831732824091804122
Loading
/content/journals/ccb/10.2174/012212796831732824091804122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test