
Full text loading...
Background: Core-magnetic composites offer unique possibilities to accommodate adequate amounts of acid-base and redox functional sites and hence to catalyze the biomass conversion reactions in a one-pot way. Moreover, due to the dual functionality, the core-magnetic composites provide a bridge between homogeneous and heterogeneous catalysis. Hence, this minireview aims to offer a comprehensive account of remarkable recent applications of core-magnetic composites in the catalytic processes for biomass valorization. Methods: A critical evaluation of synthetic methodologies utilized for the production of the magnetic nanoparticles, characterization techniques and catalytic applications is provided. Results: The benefits of their utilization are exemplified by most representative examples of one-pot transformation of cellulose and upgrading processes. Other recent examples constitute the lignin fragmentation on magnetic iron oxide-based catalysts and the renewable crude glycerol up-grading using core-shell magnetic iron oxide bio-based materials. Conclusion: The review provides important information on the distinctive properties of the functionalized core-magnetic composites. Moreover, this review offers useful information affording a largescale production development, in terms of catalyst and reaction conditions, tailoring selectivity, and the potential to regenerate the catalysts.