Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Background: Lipases are excellent biocatalysts with dual ability of hydrolysis as well as esterification with high efficiency and substrate specificity. However, in the pristine form they have inherent limitations such as lack of reusability and limited thermal and pH stability those restrict their uses in commercial applications. These limitations can be overcome by their immobilization on the suitable supports. Methods: In the present study a new poly(acrylic acid)-based functional nanogel was prepared by a simple surfactant free emulsification method and functionalized to poly(acrylic azide) form by a simple chemical protocol. Nanogels were characterized by X-Ray diffraction (XRD), Fourier Transform Infra Red (FTIR) spectroscopy, and transmission electron microscopy (TEM) to get evidence of the network formation and post reaction. The well characterized precursor nanogel and its functional derivatives were used as supports to immobilize lipase (triacyl glycerin). The activity assay of the immobilized lipase was carried out by the standard assay method. The catalytic potential of the immobilized lipase was evaluated in hydrolytic reactions using p-nitrophenol palmitate as substrate. Results: Immobilization enhanced the lipase activity and the structure of the nanogels made significant difference in enhancing their activity as the lipase immobilized on poly(Acryl azide)-cl-divinylbenzene nanogel exhibited the higher activity than the lipase immobilized on the precursor nanogel. Also, its activity was far higher than the free lipase. The immobilized lipase exhibited thermal and pH stability, which is not possible with the free lipase. Conclusion: The lipase was immobilized by the covalent linkages. The immobilized lipase exhibited good activity, storability and reusability. These results were dependent on the nanogel structure. Hence, a suitable nanogel can be tailored to obtain the maximum gains of immobilization. The reported results have good technological potential.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/2211544705666160112230828
2016-04-01
2025-03-11
Loading full text...

Full text loading...

/content/journals/ccat/10.2174/2211544705666160112230828
Loading

  • Article Type:
    Research Article
Keyword(s): Covalent immobilization; hydrolysis; lipase; nanogel; reusability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test