Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Diphenyilsulfide oxidation by H2O2 as oxidant was studied through the structural effect of the isomorphous W-Mo systems, Anderson type, with [Ni(II)Mo(VI)6-xW(VI)xO24H6]-4 composition. These phases were proved as alternative catalysts instead of W and Mo conventional systems. The characterization of the substituted phases was carried out by different physico-chemical techniques (AAS, DRS, micro-Raman, XRD, TPR). The catalytic evaluation for the phase NiW6 revealed that the process was selective to the sulfone formation (selectivity ~ 81-88 %) while the Ni-Mo bi-metallic system (NiMo6) was only selective to the sulfoxide production (selectivity 98 %). The activity was 90 % at 60 and 180 min for the NiMo6 and NiW6 respectively, whereas the substituted phases presented intermediate values. The observed differences can be related to the strength of the bridge bonds (Mo-O…Ni and W-O…Ni) associated to the higher electronegativity and ionic potential of Mo with respect to W. Hence, the W-O bond is more reactive by the inductive effect of Ni, which produces a higher oxidation of diphenyilsulfide to give sulfone, considering the electronic mobility in the redox processes.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/2211544702666131224232754
2014-08-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/ccat/10.2174/2211544702666131224232754
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test