Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Fe-exchanged zeolites show great promise for the direct benzene hydroxylation to phenol, one of the most important industrial chemicals. In this review, the recent achievements on the active sites and benzene hydroxylation have been summarized and discussed. Firstly, the catalytic results that are assumed in absence of Fe ions are given; secondly, the indispensible role of Fe ions has been revealed. Four types of Fe-involved active sites reported so far have been elaborated, and each type may correpond to a variety of active-site structures. Then the catalytic mechanisms of the mono- and binuclear-Fe sites are sucessively exploited, which are found to be quite similar. The comprising Fe3+ ions are catalytically unfavorable owing to the formation of specailly stable phenolate intermediates that result in deactivation to the catalysts. The Fe2+ ions, whether in the mononuclear or binuclear sites, are potentially active for the catalytic reaction. Finally, a brief concluding remark is presented listing some unresolved problems that may seriously impede this catalytic reaction on an industrial scale.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/2211544702666131120003954
2014-04-01
2025-02-17
Loading full text...

Full text loading...

/content/journals/ccat/10.2174/2211544702666131120003954
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test