Skip to content
2000
image of Hydrogenation of Benzene and Toluene by a Ruthenium(II) Quinoxaline Schiff Base Complex as Catalyst

Abstract

Introduction

A four-coordinate ruthenium(II) quinoxaline Schiff base complex with formula [RuLCl].HO has been synthesized and characterized. The hydrogenation of benzene and toluene using this complex as a catalyst was studied in a semi-batch reactor.

Method

At 60ºC with 2.82 × 10-6 mol catalyst and 30 bar hydrogen pressure, turnover frequencies 7362 h-1 and 5873 h-1 have been found for the reduction of benzene (0.34 mol) and toluene (0.28 mol), respectively.

Results

Both partial and complete reduction occurs with more selectivity for the formation of completely reduced products. The initial rate approach was used to study the kinetics of benzene hydrogenation, and the reaction was discovered to be first order with regard to benzene and the catalyst, while following Michaelis-Menton kinetics with respect to dihydrogen.

Conclusion

This kinetic data proposed an intermediate hydride/dihydrogen complex as the catalytically active species which controls the overall hydrogenation rate.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447353193241119093602
2024-11-25
2025-01-19
Loading full text...

Full text loading...

References

  1. Canali L. Sherrington D.C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev. 1999 28 2 85 93 10.1039/a806483k
    [Google Scholar]
  2. Katsuki T. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 1995 140 189 214 10.1016/0010‑8545(94)01124‑T
    [Google Scholar]
  3. Gupta K.C. Sutar A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008 252 12-14 1420 1450 10.1016/j.ccr.2007.09.005
    [Google Scholar]
  4. Cozzi P.G. Metal–Salen Schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev. 2004 33 7 410 421 10.1039/B307853C 15354222
    [Google Scholar]
  5. Juyal V.K. Pathak A. Panwar M. Thakuri S.C. Prakash O. Agrwal A. Nand V. Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem. 2023 999 122825 10.1016/j.jorganchem.2023.122825
    [Google Scholar]
  6. Karvembu R. Prabhakaran R. Natarajan K. Shvo’s diruthenium complex: A robust catalyst. Coord. Chem. Rev. 2005 249 9-10 911 918 10.1016/j.ccr.2004.09.025
    [Google Scholar]
  7. Pearly S.C. Sridevi N. Mohammed Yusuff K.K. Characterization and catalytic activity of polymer supported ruthenium Schiff base complexes towards catechol oxidation. J. Appl. Polym. Sci. 2007 105 3 997 1002 10.1002/app.26143
    [Google Scholar]
  8. Drozdzak R. Allaert B. Ledoux N. Dragutan I. Dragutan V. Verpoort F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coord. Chem. Rev. 2005 249 24 3055 3074 10.1016/j.ccr.2005.05.003
    [Google Scholar]
  9. Jiao Y.P. Zhang L.S. Chen C. Tang L.H. Cheng Y. Jia A.Q. Zhang Q.F. A series of acac-ruthenium complexes with chiral Schiff base ligands: Synthesis, characterization and catalytic property. J. Mol. Struct. 2023 1288 135704 10.1016/j.molstruc.2023.135704
    [Google Scholar]
  10. Abdur-Rashid K. Clapham S.E. Hadzovic A. Harvey J.N. Lough A.J. Morris R.H. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes. J. Am. Chem. Soc. 2002 124 50 15104 15118 10.1021/ja016817p 12475357
    [Google Scholar]
  11. Baricelli P.J. Izaguirre L. López J. Lujano E. López-Linares F. Synthesis, characterization and catalytic hydrogenation in aqueous-biphasic system of a new water soluble complex RuH(CO)(NCMe)(TPPMS)3[BF4]. J. Mol. Catal. Chem. 2004 208 1-2 67 72 10.1016/j.molcata.2003.07.006
    [Google Scholar]
  12. Chen B. Dingerdissen U. Krauter J.G.E. Lansink Rotgerink H.G.J. Möbus K. Ostgard D.J. Panster P. Riermeier T.H. Seebald S. Tacke T. Trauthwein H. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A Gen. 2005 280 1 17 46 10.1016/j.apcata.2004.08.025
    [Google Scholar]
  13. Garcia Fidalgo E. Plasseraud L. Süss-Fink G. Catalysis in aqueous solution: Hydrogenation of benzene derivatives catalysed by (η6-C6H6)2Ru2Cl4. J. Mol. Catal. Chem. 1998 132 1 5 12 10.1016/S1381‑1169(97)00229‑X
    [Google Scholar]
  14. Noyori R. Hashiguchi S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997 30 2 97 102 10.1021/ar9502341
    [Google Scholar]
  15. Nomura K. Ogura H. Imanishi Y. Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. J. Mol. Catal. Chem. 2002 178 1-2 105 114 10.1016/S1381‑1169(01)00281‑3
    [Google Scholar]
  16. Parmar D.U. Bhatt S.D. Bajaj H.C. Jasra R.V. Hydrogenation of alkenes and aromatic hydrocarbons using water-soluble RuCl2(TPPTS)3 in aqueous medium. J. Mol. Catal. Chem. 2003 202 1-2 9 15 10.1016/S1381‑1169(03)00248‑6
    [Google Scholar]
  17. Sandoval C.A. Ohkuma T. Muñiz K. Noyori R. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-rutheniumII complexes. J. Am. Chem. Soc. 2003 125 44 13490 13503 10.1021/ja030272c 14583046
    [Google Scholar]
  18. Kumah R.T. Ojwach S.O. Mononuclear and dinuclear (pyridyl) dicarboxamide Ru(II) hydrido complexes: Ligand controlled coordination diversity and catalytic transfer hydrogenation of ketones. J. Organomet. Chem. 2024 1005 122970 10.1016/j.jorganchem.2023.122970
    [Google Scholar]
  19. Morin C. Simon D. Sautet P. Intermediates in the hydrogenation of benzene to cyclohexene on Pt(111) and Pd(111): A comparison from DFT calculations. Surf. Sci. 2006 600 6 1339 1350 10.1016/j.susc.2006.01.033
    [Google Scholar]
  20. Rautanen P.A. Aittamaa J.R. Krause A.O.I. Solvent effect in liquid-phase hydrogenation of toluene. Ind. Eng. Chem. Res. 2000 39 11 4032 4039 10.1021/ie000349v
    [Google Scholar]
  21. El-Hendawy M.M. Ramadan A.E.M.M. Ibrahim M.M. Mechanistic insights on the catalytic hydrogenation of cyclohexene by ruthenium(III) N2O2 tetradentate Schiff-base complex. Int. J. Hydrogen Energy 2021 46 80 39786 39798 10.1016/j.ijhydene.2021.09.213
    [Google Scholar]
  22. Stanislaus A. Cooper B.H. Aromatic hydrogenation catalysis: A review. Catal. Rev., Sci. Eng. 1994 36 1 75 123 10.1080/01614949408013921
    [Google Scholar]
  23. Andriollo A. Bolívar A. López F.A. Páez D.E. Homogeneous catalysis in water. On the synthesis and characterization of a ruthenium water-soluble complex: preliminary hydrogenation of olefins in a biphasic system. Inorg. Chim. Acta 1995 238 1-2 187 192 10.1016/0020‑1693(95)04704‑D
    [Google Scholar]
  24. Baricelli P.J. Cruz G.T. Modroño-Alonso M. Jiménez L. Rosales M. Castro W. Linares F.L. A combined catalytic and kinetic study of the aqueous-biphasic hydrogenation of allylbenzenes by using a dihydride-ruthenium complex containing tri(sodium-o-sulfonatedphenylphosphine) ligands. J. Organomet. Chem. 2024 1005 122996 10.1016/j.jorganchem.2023.122996
    [Google Scholar]
  25. Daguenet C. Scopelliti R. Dyson P.J. Mechanistic investigations on the hydrogenation of alkenes using ruthenium(ii)-arene diphosphine complexes. Organometallics 2004 23 21 4849 4857 10.1021/om049665q
    [Google Scholar]
  26. Hey D.A. Reich R.M. Baratta W. Kühn F.E. Current advances on ruthenium(II) N-heterocyclic carbenes in hydrogenation reactions. Coord. Chem. Rev. 2018 374 114 132 10.1016/j.ccr.2018.06.005
    [Google Scholar]
  27. Dobereiner G.E. Zhang X. Wang H. Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier 2022
    [Google Scholar]
  28. Hu S.C. Chen Y.W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La 2 O 3 −ZnO binary oxides. Ind. Eng. Chem. Res. 1997 36 12 5153 5159 10.1021/ie970300y
    [Google Scholar]
  29. Morilla M.E. Rodríguez P. Belderrain T.R. Graiff C. Tiripicchio A. Nicasio M.C. Pérez P.J. Synthesis, characterization, and reactivity of ruthenium diene/diamine complexes including catalytic hydrogenation of ketones. Inorg. Chem. 2007 46 22 9405 9414 10.1021/ic701363g 17900107
    [Google Scholar]
  30. Ribeiro M.C. Corrêa R.S. Barbosa M.I.F. Delolo F.G. Ellena J. Bogado A.L. Batista A.A. Synthesis, characterization and reactivity of halides/pseudohalides and their complexes containing ruthenium II in the hydrogenation of cyclohexene. Polyhedron 2017 137 311 320 10.1016/j.poly.2017.08.013
    [Google Scholar]
  31. Borowski A.F. Sabo-Etienne S. Chaudret B. Homogeneous hydrogenation of arenes catalyzed by the bis(dihydrogen) complex [RuH2(H2)2(PCy3)2]. J. Mol. Catal. Chem. 2001 174 1-2 69 79 10.1016/S1381‑1169(01)00187‑X
    [Google Scholar]
  32. Widegren J.A. Bennett M.A. Finke R.G. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(η 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation. J. Am. Chem. Soc. 2003 125 34 10301 10310 10.1021/ja021436c 12926954
    [Google Scholar]
  33. Muetterties E.L. Bleeke J.R. Catalytic hydrogenation of aromatic hydrocarbons. Acc. Chem. Res. 1979 12 9 324 331 10.1021/ar50141a004
    [Google Scholar]
  34. Cagnola E.A. Quiroga M.E. Liprandi D.A. L’Argentière P.C. Immobilized Rh, Ru, Pd and Ni complexes as catalysts in the hydrogenation of cyclohexene. Appl. Catal. A Gen. 2004 274 1-2 205 212 10.1016/j.apcata.2004.07.001
    [Google Scholar]
  35. Serron S.A. Haar C.M. Nolan S.P. Brammer L. Synthesis, characterization, and catalytic behavior of Ruthenium(II) Schiff base complexes. Organometallics 1997 16 23 5120 5123 10.1021/om970600f
    [Google Scholar]
  36. Boettcher A. Elias H. Jaeger E.G. Langfelderova H. Mazur M. Mueller L. Paulus H. Pelikan P. Rudolph M. Valko M. Comparative study on the coordination chemistry of cobalt(II), nickel(II), and copper(II) with derivatives of salen and tetrahydrosalen: Metal-catalyzed oxidative dehydrogenation of the carbon-nitrogen bond in coordinated tetrahydrosalen. Inorg. Chem. 1993 32 19 4131 4138 10.1021/ic00071a028
    [Google Scholar]
  37. Chen P. Fan B. Song M. Jin C. Ma J. Li R. Zeolite-encapsulated Ru(III) tetrahydro-Schiff base complex: An efficient heterogeneous catalyst for the hydrogenation of benzene under mild conditions. Catal. Commun. 2006 7 12 969 973 10.1016/j.catcom.2006.04.003
    [Google Scholar]
  38. Arun V. Sridevi N. Robinson P.P. Manju S. Yusuff K.K.M. Ni(II) and Ru(II) Schiff base complexes as catalysts for the reduction of benzene. J. Mol. Catal. Chem. 2009 304 1-2 191 198 10.1016/j.molcata.2009.02.011
    [Google Scholar]
  39. Vogel A.I. A Text Book of Quantitative Inorganic Analysis. 3rd ed London Longman 1978
    [Google Scholar]
  40. Arun V. Robinson P.P. Manju S. Leeju P. Varsha G. Digna V. Yusuff K.K.M. A novel fluorescent bisazomethine dye derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 2,3-diaminomaleonitrile. Dyes Pigments 2009 82 3 268 275 10.1016/j.dyepig.2009.01.010
    [Google Scholar]
  41. Misra T.K. Das D. Sinha C. Ghosh P. Pal C.K. Chemistry of azoimidazoles: synthesis, spectral characterization, electrochemical studies, and x-ray crystal structures of isomeric dichloro bis[1-alkyl-2-(arylazo)imidazole] complexes of ruthenium(II). Inorg. Chem. 1998 37 8 1672 1678 10.1021/ic970446p
    [Google Scholar]
  42. Shebl M. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008 70 4 850 859 10.1016/j.saa.2007.09.035 17997352
    [Google Scholar]
  43. MacLachlan M.J. Park M.K. Thompson L.K. Coordination compounds of schiff-base ligands derived from Diaminomaleonitrile (DMN): Mononuclear, dinuclear, and macrocyclic derivatives. Inorg. Chem. 1996 35 19 5492 5499 10.1021/ic960237p 11666735
    [Google Scholar]
  44. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th ed New York John Wiely and Sons, Inc 1986
    [Google Scholar]
  45. Taqui Khan M.M. Khan N.H. Kureshy R.I. Boricha A.B. Shaikh Z.A. Synthesis, characterisation, oxygenation and carbonylation of ruthenium(III) schiff base complexes. Inorg. Chim. Acta 1990 170 2 213 223 10.1016/S0020‑1693(00)80478‑8
    [Google Scholar]
  46. Watson L.A. Ozerov O.V. Pink M. Caulton K.G. Four-coordinate, planar RuII. A triplet state as a response to a 14-valence electron configuration. J. Am. Chem. Soc. 2003 125 28 8426 8427 10.1021/ja035166p 12848535
    [Google Scholar]
  47. Huang D. Streib W.E. Bollinger J.C. Caulton K.G. Winter R.F. Scheiring T. 14-Electron four-coordinate Ru(II) carbyl complexes and their five-coordinate precursors: Synthesis, double agostic interactions, and reactivity. J. Am. Chem. Soc. 1999 121 35 8087 8097 10.1021/ja990621w
    [Google Scholar]
  48. Augustine R.L. Heterogeneous Catalysis for the Synthetic Chemist. New York Marcel Dekker 1996
    [Google Scholar]
  49. Zhang L. Zhang Y. Zhou X.G. Li R.X. Li X.J. Tin K.C. Wong N.B. Syntheses of Ru–η6-C6H6-diphosphine complexes and their catalytic properties for hydrogenation of benzene. J. Mol. Catal. Chem. 2006 256 1-2 171 177 10.1016/j.molcata.2006.04.032
    [Google Scholar]
  50. Zassinovich G. Mestroni G. Gladiali S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem. Rev. 1992 92 5 1051 1069 10.1021/cr00013a015
    [Google Scholar]
  51. Naota T. Takaya H. Murahashi S.I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 1998 98 7 2599 2660 10.1021/cr9403695 11848973
    [Google Scholar]
  52. Sánchez-Delgado R.A. Rosales M. Kinetic studies as a tool for the elucidation of the mechanisms of metal complex-catalyzed homogeneous hydrogenation reactions. Coord. Chem. Rev. 2000 196 1 249 280 10.1016/S0010‑8545(99)00168‑X
    [Google Scholar]
  53. Clapham S.E. Hadzovic A. Morris R.H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 2004 248 21-24 2201 2237 10.1016/j.ccr.2004.04.007
    [Google Scholar]
  54. Joó F. Aqueous biphasic hydrogenations. Acc. Chem. Res. 2002 35 9 738 745 10.1021/ar0100733 12234203
    [Google Scholar]
  55. Kubas G.J. Metal Dihydrogen and Sigma-Bond Complexes. New York Kluwer Academic Publishers/Plenum Press 2001 10.1007/b113929
    [Google Scholar]
  56. Sabo-Etienne S. Chaudret B. Chemistry of bis(dihydrogen) ruthenium complexes and of their derivatives. Coord. Chem. Rev. 1998 178-180 381 407 10.1016/S0010‑8545(98)00063‑0
    [Google Scholar]
  57. Widegren J.A. Finke R.G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts. J. Mol. Catal. Chem. 2003 191 2 187 207 10.1016/S1381‑1169(02)00125‑5
    [Google Scholar]
  58. Hagen C.M. Widegren J.A. Maitlis P.M. Finke R.G. Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [Rh(η5-C5Me5)Cl2]2 as a function of temperature and hydrogen pressure. J. Am. Chem. Soc. 2005 127 12 4423 4432 10.1021/ja044154g 15783225
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447353193241119093602
Loading
/content/journals/ccat/10.2174/0122115447353193241119093602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test