Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Introduction

A four-coordinate ruthenium(II) quinoxaline Schiff base complex with formula [RuLCl].HO has been synthesized and characterized. The hydrogenation of benzene and toluene using this complex as a catalyst was studied in a semi-batch reactor.

Methods

At 60℃ with 2.82 × 10-6 mol catalyst and 30 bar hydrogen pressure, turnover frequencies 7362 h-1 and 5873 h-1 have been found for the reduction of benzene (0.34 mol) and toluene (0.28 mol), respectively.

Results

Both partial and complete reduction occurs with more selectivity for the formation of completely reduced products. The initial rate approach was used to study the kinetics of benzene hydrogenation, and the reaction was discovered to be first order with regard to benzene and the catalyst, while following Michaelis-Menton kinetics with respect to dihydrogen.

Conclusion

This kinetic data proposed an intermediate hydride/dihydrogen complex as the catalytically active species which controls the overall hydrogenation rate.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447353193241119093602
2024-11-25
2025-04-09
Loading full text...

Full text loading...

References

  1. CanaliL. SherringtonD.C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis.Chem. Soc. Rev.1999282859310.1039/a806483k
    [Google Scholar]
  2. KatsukiT. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts.Coord. Chem. Rev.199514018921410.1016/0010‑8545(94)01124‑T
    [Google Scholar]
  3. GuptaK.C. SutarA.K. Catalytic activities of Schiff base transition metal complexes.Coord. Chem. Rev.200825212-141420145010.1016/j.ccr.2007.09.005
    [Google Scholar]
  4. CozziP.G. Metal–Salen Schiff base complexes in catalysis: Practical aspects.Chem. Soc. Rev.200433741042110.1039/B307853C 15354222
    [Google Scholar]
  5. JuyalV.K. PathakA. PanwarM. ThakuriS.C. PrakashO. AgrwalA. NandV. Schiff base metal complexes as a versatile catalyst: A review.J. Organomet. Chem.202399912282510.1016/j.jorganchem.2023.122825
    [Google Scholar]
  6. KarvembuR. PrabhakaranR. NatarajanK. Shvo’s diruthenium complex: A robust catalyst.Coord. Chem. Rev.20052499-1091191810.1016/j.ccr.2004.09.025
    [Google Scholar]
  7. PearlyS.C. SrideviN. Mohammed YusuffK.K. Characterization and catalytic activity of polymer supported ruthenium Schiff base complexes towards catechol oxidation.J. Appl. Polym. Sci.20071053997100210.1002/app.26143
    [Google Scholar]
  8. DrozdzakR. AllaertB. LedouxN. DragutanI. DragutanV. VerpoortF. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses.Coord. Chem. Rev.2005249243055307410.1016/j.ccr.2005.05.003
    [Google Scholar]
  9. JiaoY.P. ZhangL.S. ChenC. TangL.H. ChengY. JiaA.Q. ZhangQ.F. A series of acac-ruthenium complexes with chiral Schiff base ligands: Synthesis, characterization and catalytic property.J. Mol. Struct.2023128813570410.1016/j.molstruc.2023.135704
    [Google Scholar]
  10. Abdur-RashidK. ClaphamS.E. HadzovicA. HarveyJ.N. LoughA.J. MorrisR.H. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes.J. Am. Chem. Soc.200212450151041511810.1021/ja016817p 12475357
    [Google Scholar]
  11. BaricelliP.J. IzaguirreL. LópezJ. LujanoE. López-LinaresF. Synthesis, characterization and catalytic hydrogenation in aqueous-biphasic system of a new water soluble complex RuH(CO)(NCMe)(TPPMS)3[BF4].J. Mol. Catal. Chem.20042081-2677210.1016/j.molcata.2003.07.006
    [Google Scholar]
  12. ChenB. DingerdissenU. KrauterJ.G.E. Lansink RotgerinkH.G.J. MöbusK. OstgardD.J. PansterP. RiermeierT.H. SeebaldS. TackeT. TrauthweinH. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals.Appl. Catal. A Gen.20052801174610.1016/j.apcata.2004.08.025
    [Google Scholar]
  13. Garcia FidalgoE. PlasseraudL. Süss-FinkG. Catalysis in aqueous solution: Hydrogenation of benzene derivatives catalysed by (η6-C6H6)2Ru2Cl4.J. Mol. Catal. Chem.1998132151210.1016/S1381‑1169(97)00229‑X
    [Google Scholar]
  14. NoyoriR. HashiguchiS. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes.Acc. Chem. Res.19973029710210.1021/ar9502341
    [Google Scholar]
  15. NomuraK. OguraH. ImanishiY. Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure.J. Mol. Catal. Chem.20021781-210511410.1016/S1381‑1169(01)00281‑3
    [Google Scholar]
  16. ParmarD.U. BhattS.D. BajajH.C. JasraR.V. Hydrogenation of alkenes and aromatic hydrocarbons using water-soluble RuCl2(TPPTS)3 in aqueous medium.J. Mol. Catal. Chem.20032021-291510.1016/S1381‑1169(03)00248‑6
    [Google Scholar]
  17. SandovalC.A. OhkumaT. MuñizK. NoyoriR. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-rutheniumII complexes.J. Am. Chem. Soc.200312544134901350310.1021/ja030272c 14583046
    [Google Scholar]
  18. KumahR.T. OjwachS.O. Mononuclear and dinuclear (pyridyl) dicarboxamide Ru(II) hydrido complexes: Ligand controlled coordination diversity and catalytic transfer hydrogenation of ketones.J. Organomet. Chem.2024100512297010.1016/j.jorganchem.2023.122970
    [Google Scholar]
  19. MorinC. SimonD. SautetP. Intermediates in the hydrogenation of benzene to cyclohexene on Pt(111) and Pd(111): A comparison from DFT calculations.Surf. Sci.200660061339135010.1016/j.susc.2006.01.033
    [Google Scholar]
  20. RautanenP.A. AittamaaJ.R. KrauseA.O.I. Solvent effect in liquid-phase hydrogenation of toluene.Ind. Eng. Chem. Res.200039114032403910.1021/ie000349v
    [Google Scholar]
  21. El-HendawyM.M. RamadanA.E.M.M. IbrahimM.M. Mechanistic insights on the catalytic hydrogenation of cyclohexene by ruthenium(III) N2O2 tetradentate Schiff-base complex.Int. J. Hydrogen Energy20214680397863979810.1016/j.ijhydene.2021.09.213
    [Google Scholar]
  22. StanislausA. CooperB.H. Aromatic hydrogenation catalysis: A review.Catal. Rev., Sci. Eng.19943617512310.1080/01614949408013921
    [Google Scholar]
  23. AndriolloA. BolívarA. LópezF.A. PáezD.E. Homogeneous catalysis in water. On the synthesis and characterization of a ruthenium water-soluble complex: preliminary hydrogenation of olefins in a biphasic system.Inorg. Chim. Acta19952381-218719210.1016/0020‑1693(95)04704‑D
    [Google Scholar]
  24. BaricelliP.J. CruzG.T. Modroño-AlonsoM. JiménezL. RosalesM. CastroW. LinaresF.L. A combined catalytic and kinetic study of the aqueous-biphasic hydrogenation of allylbenzenes by using a dihydride-ruthenium complex containing tri(sodium-o-sulfonatedphenylphosphine) ligands.J. Organomet. Chem.2024100512299610.1016/j.jorganchem.2023.122996
    [Google Scholar]
  25. DaguenetC. ScopellitiR. DysonP.J. Mechanistic investigations on the hydrogenation of alkenes using ruthenium(ii)-arene diphosphine complexes.Organometallics200423214849485710.1021/om049665q
    [Google Scholar]
  26. HeyD.A. ReichR.M. BarattaW. KühnF.E. Current advances on ruthenium(II) N-heterocyclic carbenes in hydrogenation reactions.Coord. Chem. Rev.201837411413210.1016/j.ccr.2018.06.005
    [Google Scholar]
  27. DobereinerG.E. ZhangX. WangH. Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.Elsevier2022
    [Google Scholar]
  28. HuS.C. ChenY.W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La 2 O 3 −ZnO binary oxides.Ind. Eng. Chem. Res.199736125153515910.1021/ie970300y
    [Google Scholar]
  29. MorillaM.E. RodríguezP. BelderrainT.R. GraiffC. TiripicchioA. NicasioM.C. PérezP.J. Synthesis, characterization, and reactivity of ruthenium diene/diamine complexes including catalytic hydrogenation of ketones.Inorg. Chem.200746229405941410.1021/ic701363g 17900107
    [Google Scholar]
  30. RibeiroM.C. CorrêaR.S. BarbosaM.I.F. DeloloF.G. EllenaJ. BogadoA.L. BatistaA.A. Synthesis, characterization and reactivity of halides/pseudohalides and their complexes containing ruthenium II in the hydrogenation of cyclohexene.Polyhedron201713731132010.1016/j.poly.2017.08.013
    [Google Scholar]
  31. BorowskiA.F. Sabo-EtienneS. ChaudretB. Homogeneous hydrogenation of arenes catalyzed by the bis(dihydrogen) complex[RuH2(H2)2(PCy3)2].J. Mol. Catal. Chem.20011741-2697910.1016/S1381‑1169(01)00187‑X
    [Google Scholar]
  32. WidegrenJ.A. BennettM.A. FinkeR.G. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(η 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation.J. Am. Chem. Soc.200312534103011031010.1021/ja021436c 12926954
    [Google Scholar]
  33. MuettertiesE.L. BleekeJ.R. Catalytic hydrogenation of aromatic hydrocarbons.Acc. Chem. Res.197912932433110.1021/ar50141a004
    [Google Scholar]
  34. CagnolaE.A. QuirogaM.E. LiprandiD.A. L’ArgentièreP.C. Immobilized Rh, Ru, Pd and Ni complexes as catalysts in the hydrogenation of cyclohexene.Appl. Catal. A Gen.20042741-220521210.1016/j.apcata.2004.07.001
    [Google Scholar]
  35. SerronS.A. HaarC.M. NolanS.P. BrammerL. Synthesis, characterization, and catalytic behavior of Ruthenium(II) Schiff base complexes.Organometallics199716235120512310.1021/om970600f
    [Google Scholar]
  36. BoettcherA. EliasH. JaegerE.G. LangfelderovaH. MazurM. MuellerL. PaulusH. PelikanP. RudolphM. ValkoM. Comparative study on the coordination chemistry of cobalt(II), nickel(II), and copper(II) with derivatives of salen and tetrahydrosalen: Metal-catalyzed oxidative dehydrogenation of the carbon-nitrogen bond in coordinated tetrahydrosalen.Inorg. Chem.199332194131413810.1021/ic00071a028
    [Google Scholar]
  37. ChenP. FanB. SongM. JinC. MaJ. LiR. Zeolite-encapsulated Ru(III) tetrahydro-Schiff base complex: An efficient heterogeneous catalyst for the hydrogenation of benzene under mild conditions.Catal. Commun.200671296997310.1016/j.catcom.2006.04.003
    [Google Scholar]
  38. ArunV. SrideviN. RobinsonP.P. ManjuS. YusuffK.K.M. Ni(II) and Ru(II) Schiff base complexes as catalysts for the reduction of benzene.J. Mol. Catal. Chem.20093041-219119810.1016/j.molcata.2009.02.011
    [Google Scholar]
  39. VogelA.I. A Text Book of Quantitative Inorganic Analysis.3rd edLondonLongman1978
    [Google Scholar]
  40. ArunV. RobinsonP.P. ManjuS. LeejuP. VarshaG. DignaV. YusuffK.K.M. A novel fluorescent bisazomethine dye derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 2,3-diaminomaleonitrile.Dyes Pigments200982326827510.1016/j.dyepig.2009.01.010
    [Google Scholar]
  41. MisraT.K. DasD. SinhaC. GhoshP. PalC.K. Chemistry of azoimidazoles: synthesis, spectral characterization, electrochemical studies, and x-ray crystal structures of isomeric dichloro bis[1-alkyl-2-(arylazo)imidazole] complexes of ruthenium(II).Inorg. Chem.19983781672167810.1021/ic970446p
    [Google Scholar]
  42. SheblM. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine.Spectrochim. Acta A Mol. Biomol. Spectrosc.200870485085910.1016/j.saa.2007.09.035 17997352
    [Google Scholar]
  43. MacLachlanM.J. ParkM.K. ThompsonL.K. Coordination compounds of schiff-base ligands derived from Diaminomaleonitrile (DMN): Mononuclear, dinuclear, and macrocyclic derivatives.Inorg. Chem.199635195492549910.1021/ic960237p 11666735
    [Google Scholar]
  44. NakamotoK. Infrared and Raman Spectra of Inorganic and Coordination Compounds.4th edNew YorkJohn Wiely and Sons, Inc1986
    [Google Scholar]
  45. Taqui KhanM.M. KhanN.H. KureshyR.I. BorichaA.B. ShaikhZ.A. Synthesis, characterisation, oxygenation and carbonylation of ruthenium(III) schiff base complexes.Inorg. Chim. Acta1990170221322310.1016/S0020‑1693(00)80478‑8
    [Google Scholar]
  46. WatsonL.A. OzerovO.V. PinkM. CaultonK.G. Four-coordinate, planar RuII. A triplet state as a response to a 14-valence electron configuration.J. Am. Chem. Soc.2003125288426842710.1021/ja035166p 12848535
    [Google Scholar]
  47. HuangD. StreibW.E. BollingerJ.C. CaultonK.G. WinterR.F. ScheiringT. 14-Electron four-coordinate Ru(II) carbyl complexes and their five-coordinate precursors: Synthesis, double agostic interactions, and reactivity.J. Am. Chem. Soc.1999121358087809710.1021/ja990621w
    [Google Scholar]
  48. AugustineR.L. Heterogeneous Catalysis for the Synthetic Chemist.New YorkMarcel Dekker1996
    [Google Scholar]
  49. ZhangL. ZhangY. ZhouX.G. LiR.X. LiX.J. TinK.C. WongN.B. Syntheses of Ru–η6-C6H6-diphosphine complexes and their catalytic properties for hydrogenation of benzene.J. Mol. Catal. Chem.20062561-217117710.1016/j.molcata.2006.04.032
    [Google Scholar]
  50. ZassinovichG. MestroniG. GladialiS. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts.Chem. Rev.19929251051106910.1021/cr00013a015
    [Google Scholar]
  51. NaotaT. TakayaH. MurahashiS.I. Ruthenium-catalyzed reactions for organic synthesis.Chem. Rev.19989872599266010.1021/cr9403695 11848973
    [Google Scholar]
  52. Sánchez-DelgadoR.A. RosalesM. Kinetic studies as a tool for the elucidation of the mechanisms of metal complex-catalyzed homogeneous hydrogenation reactions.Coord. Chem. Rev.2000196124928010.1016/S0010‑8545(99)00168‑X
    [Google Scholar]
  53. ClaphamS.E. HadzovicA. MorrisR.H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes.Coord. Chem. Rev.200424821-242201223710.1016/j.ccr.2004.04.007
    [Google Scholar]
  54. JoóF. Aqueous biphasic hydrogenations.Acc. Chem. Res.200235973874510.1021/ar0100733 12234203
    [Google Scholar]
  55. KubasG.J. Metal Dihydrogen and Sigma-Bond Complexes.New YorkKluwer Academic Publishers/Plenum Press200110.1007/b113929
    [Google Scholar]
  56. Sabo-EtienneS. ChaudretB. Chemistry of bis(dihydrogen) ruthenium complexes and of their derivatives.Coord. Chem. Rev.1998178-18038140710.1016/S0010‑8545(98)00063‑0
    [Google Scholar]
  57. WidegrenJ.A. FinkeR.G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts.J. Mol. Catal. Chem.2003191218720710.1016/S1381‑1169(02)00125‑5
    [Google Scholar]
  58. HagenC.M. WidegrenJ.A. MaitlisP.M. FinkeR.G. Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [Rh(η5-C5Me5)Cl2]2 as a function of temperature and hydrogen pressure.J. Am. Chem. Soc.2005127124423443210.1021/ja044154g 15783225
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447353193241119093602
Loading
/content/journals/ccat/10.2174/0122115447353193241119093602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test