Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Introduction

The present study aims to discuss the synthesis of various spiro-pyrano-oxoindole derivatives through a reaction involving isatin, malononitrile, and a CH-acid source in the presence of vitamin B12.

Materials and Methods

Eco-friendly solvents were utilized to synthesize the spiro-pyrano-oxoindole, resulting in high yields of all synthesized heterocyclic systems. Isatin and malononitrile were reacted with -dicarbonyls as CH-acids in the presence of vitamin B12.

Results

The results indicate that vitamin B12 is highly effective in generating spiro-pyrano-oxoindole derivatives. All synthesized compounds closely match previously reported compounds.

Conclusion

In conclusion, a new and effective method for synthesizing spiro-pyrano-oxoindole has been demonstrated using vitamin B12 as a biocatalyst.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447320104240624045243
2024-07-18
2025-04-18
Loading full text...

Full text loading...

References

  1. NicolaouK.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory.Proc.- Royal Soc., Math. Phys. Eng. Sci.201447021632013069010.1098/rspa.2013.0690 24611027
    [Google Scholar]
  2. PeplowM. The Robo-Chemist-The race is on to build a machine that can synthesize any organic compound. It could transform chemistry.Nature2014512202210.1038/512020a 25100466
    [Google Scholar]
  3. LombardinoJ.G. LoweJ.A.III The role of the medicinal chemist in drug discovery — then and now.Nat. Rev. Drug Discov.200431085386210.1038/nrd1523 15459676
    [Google Scholar]
  4. SchreiberS.L. Organic synthesis toward small-molecule probes and drugs.Proc. Natl. Acad. Sci. USA2011108176699670210.1073/pnas.1103205108 21464328
    [Google Scholar]
  5. WierzbaA.J. HassanS. GrykoD. Synthetic approaches toward vitamin B12 conjugates.Asian J. Org. Chem.20198162410.1002/ajoc.201800579
    [Google Scholar]
  6. HaghdoostM.M. SauvageauE. OguadinmaP. TranH.V. LefrancoisS. CastonguayA. Cu-catalyzed click conjugation of cobalamin to a BODIPY-based fluorophore: A versatile tool to explore the cellular biology of vitamin B12.J. Inorg. Biochem.202021011110510.1016/j.jinorgbio.2020.111105 32763615
    [Google Scholar]
  7. BeckW.S. The metabolic functions of vitamin B12.N. Engl. J. Med.19622661576577110.1056/NEJM196204122661507 13866301
    [Google Scholar]
  8. MillerA. KoremM. AlmogR. GalboizY. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis.J. Neurol. Sci.20052331-2939710.1016/j.jns.2005.03.009 15896807
    [Google Scholar]
  9. VijayaraghavanP.K. DunnM.S. Effect of vitamins B12, B12a and B12b on red blood cell counts in experimental anemia in mice.Arch. Biochem. Biophys.195131224825010.1016/0003‑9861(51)90211‑1 14830231
    [Google Scholar]
  10. HeilmanF.R. Antibiotics.Annu. Rev. Microbiol.19537121924410.1146/annurev.mi.07.100153.001251
    [Google Scholar]
  11. HuntA. HarringtonD. RobinsonS. Vitamin B12 deficiency.BMJ2014349sep04 1g522610.1136/bmj.g522625189324
    [Google Scholar]
  12. WaibelR. TreichlerH. SchaeferN.G. van StaverenD.R. MundwilerS. KunzeS. KüenziM. AlbertoR. NüeschJ. KnuthA. MochH. SchibliR. SchubigerP.A. New derivatives of vitamin B12 show preferential targeting of tumors.Cancer Res.20086882904291110.1158/0008‑5472.CAN‑07‑6771 18413759
    [Google Scholar]
  13. JackowskaA. ChromińskiM. GiedykM. GrykoD. 5′-Vitamin B 12 derivatives suitable for bioconjugation via the amide bond.Org. Biomol. Chem.201816693694310.1039/C7OB02898A 29336455
    [Google Scholar]
  14. FedosovS.N. RuetzM. GruberK. FedosovaN.U. KräutlerB. A blue corrinoid from partial degradation of vitamin B 12 in aqueous bicarbonate: Spectra, structure, and interaction with proteins of B 12 transport.Biochemistry201150378090810110.1021/bi200724s
    [Google Scholar]
  15. MarandiG. NaderniaR. HazeriN. MaghsoodlouM.T. Vitamin B12 used as effective biocatalyst for the synthesis of pyrano[2,3-c]cromenes and pyrano[2,3-d]pyrimidines.Iranian J. Catal2022124553
    [Google Scholar]
  16. BarmanS. DasJ. BiswasS. MaitiT.K. Pradeep SinghN.D. A spiropyran–coumarin platform: An environment sensitive photoresponsive drug delivery system for efficient cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20175213940394410.1039/C7TB00379J 32264255
    [Google Scholar]
  17. El-HashashM.A. RizkS.A. One-pot synthesis of novel spirooxindoles as antibacterial and antioxidant agents.J. Heterocycl. Chem.20175431776178410.1002/jhet.2758
    [Google Scholar]
  18. KumlaD. SousaE. MarengoA. DethoupT. PereiraJ.A. GalesL. Freitas-SilvaJ. CostaP.M. MistryS. SilvaA.M.S. KijjoaA. 1,3-Dioxepine and spiropyran derivatives of viomellein and other dimeric naphthopyranones from cultures of Aspergillus elegans KUFA0015 and their antibacterial activity.Phytochemistry202118111257510.1016/j.phytochem.2020.112575 33166747
    [Google Scholar]
  19. PoojariS.K.S.J.K. NaikS. Synthesis and antimicrobial studies of New spiropyran quinazolinone derivatives with amide, urea, and sulfonamide moieties.J. Heterocycl. Chem.2017543527353710.1002/jhet.2976
    [Google Scholar]
  20. ShanthiG. SubbulakshmiG. PerumalP.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions.Tetrahedron20076392057206310.1016/j.tet.2006.12.042
    [Google Scholar]
  21. EastwoodP. GonzálezJ. GómezE. CaturlaF. AguilarN. MirM. AiguadéJ. MatassaV. BalaguéC. OrellanaA. DomínguezM. Indolin-2-one p38α inhibitors III: Bioisosteric amide replacement.Bioorg. Med. Chem. Lett.201121216253625710.1016/j.bmcl.2011.09.006 21958544
    [Google Scholar]
  22. SaigalI. IrfanM. KhanP. AbidM. KhanM.M. Design, synthesis, and biological evaluation of novel fused Spiro-4 H -Pyran derivatives as bacterial biofilm disruptor.ACS Omega2019416167941680710.1021/acsomega.9b01571 31646225
    [Google Scholar]
  23. ChenG. SuH. SongY. GaoY. ZhangJ. HaoX. ZhaoJ. Synthesis and evaluation of isatin derivatives as corrosion inhibitors for Q235A steel in highly concentrated HCl.Res. Chem. Intermed.20133983669367810.1007/s11164‑012‑0870‑9
    [Google Scholar]
  24. WangG. QinJ. FanL. LiC.R. YangZ. A turn-on fluorescent sensor for highly selective recognition of Mg2+ based on new Schiff’s base derivative.J. Photochem. Photobiol. Chem.2016314293410.1016/j.jphotochem.2015.08.005
    [Google Scholar]
  25. NittiA. SignorileM. BoiocchiM. BianchiG. PoR. PasiniD. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation.J. Org. Chem.20168122110351104210.1021/acs.joc.6b01922 27709946
    [Google Scholar]
  26. WangY. LuH. XuP.F. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.Acc. Chem. Res.20154871832184410.1021/acs.accounts.5b00217 26099943
    [Google Scholar]
  27. ReddyB.N. RamanaC.V. A concise approach for central core of trigolutes: Total synthesis of trigolute B and 3- epi -trigolute B and analogues.Tetrahedron201773788889910.1016/j.tet.2016.12.074
    [Google Scholar]
  28. MobinikhalediA. ForoughifarN. FardM.A.B. Simple and efficient method for three-component synthesis of spirooxindoles in aqueous and solvent-free media.Synth. Commun.201141344145010.1080/00397911003587507
    [Google Scholar]
  29. ElinsonM.N. IlovaiskyA.I. MerkulovaV.M. DemchukD.V. BelyakovP.A. OgibinY.N. NikishinG.I. The electrocatalytic cascade assembling of isatins, malononitrile and N-alkyl barbiturates: An efficient multicomponent approach to the spiro[indole-3,5′-pyrano[2,3-d]pyrimidine] framework.Electrochim. Acta200853288346835010.1016/j.electacta.2008.06.044
    [Google Scholar]
  30. ElinsonM.N. IlovaiskyA.I. DorofeevA.S. MerkulovaV.M. StepanovN.O. MiloserdovF.M. OgibinY.N. NikishinG.I. Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, isatins, and malononitrile: Facile and convenient way to functionalized spirocyclic (5,6,7,8-tetrahydro-4H-chromene)-4,3′-oxindole system.Tetrahedron20076342105431054810.1016/j.tet.2007.07.080
    [Google Scholar]
  31. WestphalR. Venturini FilhoE. LoureiroL.B. TormenaC.F. PessoaC. GuimarãesC.J. MansoM.P. FiorotR.G. CamposV.R. ResendeJ.A.L.C. MediciF. GrecoS.J. Green synthesis of spiro compounds with potential anticancer activity through knoevenagel/michael/cyclization multicomponent domino reactions organocatalyzed by ionic liquid and microwave-assisted.Molecules202227228051806610.3390/molecules27228051
    [Google Scholar]
  32. MakaremS. FakhariA.R. MohammadiA.A. Electro-organic synthesis of nanosized particles of 2-amino-pyranes.Ind. Eng. Chem. Res.20125152200220410.1021/ie200997b
    [Google Scholar]
  33. Mohammadi ZiaraniG. BadieiA. MousaviS. LashgariN. ShahbaziA. Application of amino-functionalized SBA-15 type mesoporous silica in one-pot synthesis of spirooxindoles.Chin. J. Catal.20123311-121832183910.1016/S1872‑2067(11)60456‑7
    [Google Scholar]
  34. Safaei-GhomiJ. ElyasiZ. BabaeiP. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunctions as a new nanocatalyst for the environmentally friendly one-pot synthesis of monospiro derivatives.New J. Chem.20214531269127710.1039/D0NJ04447D
    [Google Scholar]
  35. SadeghiB. LasemiZ. AzimiR. One-pot three-component synthesis of spirooxindoles catalyzed by nano Ag/kaolin.Orient. J. Chem.20153121175117910.13005/ojc/310272
    [Google Scholar]
  36. Mitaram MeshramH. Aravind KumarD. Ramalinga Vara PrasadB. Ramesh GoudP. Efficient and convenient polyethylene glycol (PEG)-mediated synthesis of spiro-oxindoles.Helv. Chim. Acta201093464865310.1002/hlca.200900273
    [Google Scholar]
  37. AziziN. DezfooliS. Mahmoudi HashemiM. Greener synthesis of spirooxindole in deep eutectic solvent.J. Mol. Liq.2014194626710.1016/j.molliq.2014.01.009
    [Google Scholar]
  38. DarvishZ.M. MirzaB. MakaremS. Electrocatalytic multicomponent reaction for synthesis of Nanoparticles of spirooxindole derivatives from isatins, malononitrile, and dimedone.J. Heterocycl. Chem.20175431763176610.1002/jhet.2755
    [Google Scholar]
  39. KeshavarzM. Ion-pair immobilization of l-prolinate anion onto cationic polymer support and a study of its catalytic activity for one-pot synthesis of spiroindolones.J. Indian Chem. Soc.201613355356110.1007/s13738‑015‑0765‑y
    [Google Scholar]
  40. ZhuS.L. JiS.J. ZhangY. A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium.Tetrahedron200763389365937210.1016/j.tet.2007.06.113
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447320104240624045243
Loading
/content/journals/ccat/10.2174/0122115447320104240624045243
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test