Skip to content
2000
image of Biomaterials used to Deliver Drugs for Colon Cancer Management

Abstract

Despite the major advancements in cancer treatment, colon cancer (CC) is still one of the most lethal malignancies worldwide. Among various type of cancer, it is the third largest prevailing kind of cancer affecting both men and women equally. Metastatic development is particularly common in individuals with advanced stages and frequently associated with subpar response of chemotherapy and severe morbidity. The unfavorable effects of intense chemotherapy on normal cells and emergence of multidrug resistance are the two main reasons for treatment failure. Recent research in nanotechnology enables the use of advanced natural and synthetic biomaterials alone or in combination to target cancer cells with anticancer medications without affecting healthy cells. Anticancer drug laden nanocarriers improve the drug distribution, bioavailability and accumulation of cytotoxic therapeutic concentration at tumor site along with reduced side effects. Additionally, upon oral administration, polymeric vehicles shield the medication from premature release, degradation in upper gastrointestinal tract and facilitate controlled release at cancerous site of colon. Here, we primarily focus on the present situation and possible advantages of polymeric biomaterials either owned or in conjunction with other therapeutics to develop ideal drug carrier systems to treat colon carcinoma.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X299780240905141609
2024-12-24
2025-01-19
Loading full text...

Full text loading...

References

  1. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  2. Pacal I. Karaboga D. Basturk A. Akay B. Nalbantoglu U. A comprehensive review of deep learning in colon cancer. Comput. Biol. Med. 2020 126 104003 104036 10.1016/j.compbiomed.2020.104003 32987202
    [Google Scholar]
  3. Sawicki T. Ruszkowska M. Danielewicz A. Niedźwiedzka E. Arłukowicz T. Przybyłowicz K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021 13 9 2025 2048 10.3390/cancers13092025 33922197
    [Google Scholar]
  4. Labianca R. Beretta G.D. Kildani B. Milesi L. Merlin F. Mosconi S. Pessi M.A. Prochilo T. Quadri A. Gatta G. de Braud F. Wils J. Colon cancer. Crit. Rev. Oncol. Hematol. 2010 74 2 106 133 10.1016/j.critrevonc.2010.01.010 20138539
    [Google Scholar]
  5. Ulanja M.B. Rishi M. Beutler B.D. Sharma M. Patterson D.R. Gullapalli N. Ambika S. Colon cancer sidedness, presentation, and survival at different stages. J. Oncol. 2019 2019 1 12 10.1155/2019/4315032 30915121
    [Google Scholar]
  6. Terzić J. Grivennikov S. Karin E. Karin M. Inflammation and colon cancer. Gastroenterology 2010 138 6 2101 2114.e5 10.1053/j.gastro.2010.01.058 20420949
    [Google Scholar]
  7. Kow A.W.C. Hepatic metastasis from colorectal cancer. J. Gastrointest. Oncol. 2019 10 6 1274 1298 10.21037/jgo.2019.08.06 31949948
    [Google Scholar]
  8. Lakemeyer L. Sander S. Wittau M. Henne-Bruns D. Kornmann M. Lemke J. Diagnostic and prognostic value of CEA and CA19-9 in colorectal cancer. Diseases 2021 9 1 21 29 10.3390/diseases9010021 33802962
    [Google Scholar]
  9. Zhao Y. Hu X. Zuo X. Wang M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct. 2018 9 9 4548 4568 10.1039/C8FO00850G 30118121
    [Google Scholar]
  10. Saddik M.S. Elsayed M.M.A. Abdelkader M.S.A. El-Mokhtar M.A. Abdel-Aleem J.A. Abu-Dief A.M. Al-Hakkani M.F. Farghaly H.S. Abou-Taleb H.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using harpullia pendula extract for treatment of colorectal cancer. Pharmaceutics 2021 13 2 226 243 10.3390/pharmaceutics13020226 33562032
    [Google Scholar]
  11. Hong Y. Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed. Pharmacother. 2019 114 108764 108774 10.1016/j.biopha.2019.108764 30901717
    [Google Scholar]
  12. Wang C.P.J. Byun M.J. Kim S.N. Park W. Park H.H. Kim T.H. Lee J.S. Park C.G. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J. Control. Release 2022 345 1 19 10.1016/j.jconrel.2022.02.028 35227764
    [Google Scholar]
  13. Kalirajan C. Dukle A. Nathanael A.J. Oh T.H. Manivasagam G. A critical review on polymeric biomaterials for biomedical applications. Polymers 2021 13 17 3015 3041 10.3390/polym13173015 34503054
    [Google Scholar]
  14. Zhang L. Sang Y. Feng J. Li Z. Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target. 2016 24 7 579 589 10.3109/1061186X.2015.1128941 26766303
    [Google Scholar]
  15. Aminabhavi T.M. Nadagouda M.N. Joshi S.D. More U.A. Guar gum as platform for the oral controlled release of therapeutics. Expert Opin. Drug Deliv. 2014 11 5 753 766 10.1517/17425247.2014.897326 24650099
    [Google Scholar]
  16. Garg S.S. Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int. J. Biol. Macromol. 2023 229 476 485 10.1016/j.ijbiomac.2022.12.271 36603711
    [Google Scholar]
  17. Verma D. Sharma S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol. 2021 181 653 671 10.1016/j.ijbiomac.2021.03.087 33766594
    [Google Scholar]
  18. George A. Shah P.A. Shrivastav P.S. Guar gum: Versatile natural polymer for drug delivery applications. Eur. Polym. J. 2019 112 722 735 10.1016/j.eurpolymj.2018.10.042
    [Google Scholar]
  19. Dodi G. Pala A. Barbu E. Peptanariu D. Hritcu D. Popa M.I. Tamba B.I. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Mater. Sci. Eng. C 2016 63 628 636 10.1016/j.msec.2016.03.032 27040258
    [Google Scholar]
  20. Praphakar R.A. Jeyaraj M. Mehnath S. Higuchi A. Ponnamma D. Sadasivuni K.K. Rajan M. A pH-sensitive guar gum- grafted -lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J. Mater. Chem. B Mater. Biol. Med. 2018 6 10 1519 1530 10.1039/C7TB02551C 32254216
    [Google Scholar]
  21. Kang R.K. Mishr N. Rai V.K. Guar gum micro-particles for targeted co-delivery of doxorubicin and metformin HCL for improved specificity and efficacy against colon cancer: in vitro and in vivo studies. AAPS PharmSciTech 2020 21 2 48 10.1208/s12249‑019‑1589‑3 31900731
    [Google Scholar]
  22. Noreen A. Nazli Z.H. Akram J. Rasul I. Mansha A. Yaqoob N. Iqbal R. Tabasum S. Zuber M. Zia K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 2017 101 254 272 10.1016/j.ijbiomac.2017.03.029 28300586
    [Google Scholar]
  23. De Anda-Flores Y. Carvajal-Millan E. Campa-Mada A. Lizardi-Mendoza J. Rascon-Chu A. Tanori-Cordova J. Martínez-López A.L. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems. Polysaccharides 2021 2 3 626 647 10.3390/polysaccharides2030038
    [Google Scholar]
  24. Zhang W. Mahuta K.M. Mikulski B.A. Harvestine J.N. Crouse J.Z. Lee J.C. Kaltchev M.G. Tritt C.S. Novel pectin-based carriers for colonic drug delivery. Pharm. Dev. Technol. 2016 21 1 127 130 10.3109/10837450.2014.965327 25255173
    [Google Scholar]
  25. Gadalla H.H. El-Gibaly I. Soliman G.M. Mohamed F.A. El-Sayed A.M. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design. Carbohydr. Polym. 2016 153 526 534 10.1016/j.carbpol.2016.08.018 27561525
    [Google Scholar]
  26. Cheewatanakornkool K. Niratisai S. Manchun S. Dass C.R. Sriamornsak P. Thiolated pectin–doxorubicin conjugates: Synthesis, characterization and anticancer activity studies. Carbohydr. Polym. 2017 174 493 506 10.1016/j.carbpol.2017.06.115 28821097
    [Google Scholar]
  27. Mohamed J.M. Alqahtani A. Ahmad F. Krishnaraju V. Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym. 2021 252 117180 117195 10.1016/j.carbpol.2020.117180 33183627
    [Google Scholar]
  28. Giri S. Dutta P. Giri T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol. 2021 64 102595 102609 10.1016/j.jddst.2021.102595
    [Google Scholar]
  29. Walz M. Hirth T. Weber A. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying in colloids and surfaces a: physicochemical and engineering aspects. Elsevier B.V 2018 536 47 52
    [Google Scholar]
  30. Shivhare K. Garg C. Priyam A. Gupta A. Sharma A.K. Kumar P. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole. Int. J. Biol. Macromol. 2018 106 775 783 10.1016/j.ijbiomac.2017.08.071 28818724
    [Google Scholar]
  31. Walz M. Hagemann D. Trentzsch M. Weber A. Henle T. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydr. Polym. 2018 199 102 108 10.1016/j.carbpol.2018.07.015 30143109
    [Google Scholar]
  32. Jangid A.K. Solanki R. Patel S. Pooja D. Kulhari H. Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: Formulation development, characterization and anticancer activity. Int. J. Biol. Macromol. 2022 206 213 221 10.1016/j.ijbiomac.2022.02.031 35181329
    [Google Scholar]
  33. Shahdadi Sardou H. Akhgari A. Mohammadpour A.H. Beheshti Namdar A. Kamali H. Jafarian A.H. Afrasiabi Garekani H. Sadeghi F. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur. J. Pharm. Sci. 2022 168 106072 10.1016/j.ejps.2021.106072 34774715
    [Google Scholar]
  34. Azuma K. Osaki T. Minami S. Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015 6 1 33 49 10.3390/jfb6010033 25594943
    [Google Scholar]
  35. Smitha K.T. Anitha A. Furuike T. Tamura H. Nair S.V. Jayakumar R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf. B Biointerfaces 2013 104 245 253 10.1016/j.colsurfb.2012.11.031 23337120
    [Google Scholar]
  36. Satitsri S. Muanprasat C. Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules 2020 25 24 5961 5986 10.3390/molecules25245961 33339290
    [Google Scholar]
  37. Shanmuganathan R. Edison T.N.J.I. LewisOscar F. Kumar P. Shanmugam S. Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol. 2019 130 727 736 10.1016/j.ijbiomac.2019.02.060 30771392
    [Google Scholar]
  38. Bernkop-Schnürch A. Dünnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012 81 3 463 469 10.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  39. Mittal H. Ray S.S. Kaith B.S. Bhatia J.K. Sukriti Sharma J. Alhassan S.M. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur. Polym. J. 2018 109 402 434 10.1016/j.eurpolymj.2018.10.013
    [Google Scholar]
  40. Bashal A.H. Khalil K.D. Abu-Dief A.M. El-Atawy M.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int. J. Biol. Macromol. 2023 253 Pt 4 126856 10.1016/j.ijbiomac.2023.126856 37714231
    [Google Scholar]
  41. Negm N.A. Hefni H.H.H. Abd-Elaal A.A.A. Badr E.A. Abou Kana M.T.H. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020 152 681 702 10.1016/j.ijbiomac.2020.02.196 32084486
    [Google Scholar]
  42. Wang W. Meng Q. Li Q. Liu J. Zhou M. Jin Z. Zhao K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 2020 21 2 487 513 10.3390/ijms21020487 31940963
    [Google Scholar]
  43. Liu W. Wang F. Zhu Y. Li X. Liu X. Pang J. Pan W. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery. Molecules 2018 23 12 3082 3100 10.3390/molecules23123082 30486276
    [Google Scholar]
  44. Anitha A. Sreeranganathan M. Chennazhi K.P. Lakshmanan V.K. Jayakumar R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur. J. Pharm. Biopharm. 2014 88 1 238 251 10.1016/j.ejpb.2014.04.017 24815764
    [Google Scholar]
  45. Iqbal O. Shah S. Abbas G. Rasul A. Hanif M. Ashfaq M. Afzal Z. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int. J. Biol. Macromol. 2021 182 2087 2096 10.1016/j.ijbiomac.2021.05.199 34087298
    [Google Scholar]
  46. Le-Vinh B. Le N.M.N. Nazir I. Matuszczak B. Bernkop-Schnürch A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int. J. Biol. Macromol. 2019 133 647 655 10.1016/j.ijbiomac.2019.04.081 30986465
    [Google Scholar]
  47. Jiang X. Du Z. Zhang X. Zaman F. Song Z. Guan Y. Yu T. Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front. Bioeng. Biotechnol. 2023 11 1158749 1158756 10.3389/fbioe.2023.1158749 37025360
    [Google Scholar]
  48. Lin L. Regenstein J.M. Lv S. Lu J. Jiang S. An overview of gelatin derived from aquatic animals: Properties and modification. Trends Food Sci. Technol. 2017 68 102 112 10.1016/j.tifs.2017.08.012
    [Google Scholar]
  49. Campiglio C.E. Contessi Negrini N. Farè S. Draghi L. Cross-linking strategies for electrospun gelatin scaffolds. Materials 2019 12 15 2476 2499 10.3390/ma12152476 31382665
    [Google Scholar]
  50. Elzoghby A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control. Release 2013 172 3 1075 1091 10.1016/j.jconrel.2013.09.019 24096021
    [Google Scholar]
  51. Xie L. Shen M. Hong Y. Ye H. Huang L. Xie J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym. 2020 229 115436 115448 10.1016/j.carbpol.2019.115436 31826393
    [Google Scholar]
  52. Foox M. Zilberman M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 2015 12 9 1547 1563 10.1517/17425247.2015.1037272 25943722
    [Google Scholar]
  53. Anirudhan T.S. Mohan A.M. Novel pH switchable gelatin based hydrogel for the controlled delivery of the anti cancer drug 5-fluorouracil. RSC Adv. 2014 4 24 12109 12118 10.1039/c3ra47991a
    [Google Scholar]
  54. Pooresmaeil M. Namazi H. pH-sensitive carboxymethyl starch-gelatin coated COF/5-Fu for colon cancer therapy. Ind. Crops Prod. 2023 202 117102 117119 10.1016/j.indcrop.2023.117102
    [Google Scholar]
  55. Padhi J.R. Nayak D. Nanda A. Rauta P.R. Ashe S. Nayak B. Development of highly biocompatible Gelatin i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications. Carbohydr. Polym. 2016 153 292 301 10.1016/j.carbpol.2016.07.098 27561499
    [Google Scholar]
  56. Sharma R. Kuche K. Thakor P. Bhavana V. Srivastava S. Mehra N.K. Jain S. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr. Polym. 2022 286 119305 119320 10.1016/j.carbpol.2022.119305 35337491
    [Google Scholar]
  57. Zhao L. Liu M. Wang J. Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr. Polym. 2015 133 391 399 10.1016/j.carbpol.2015.07.063 26344295
    [Google Scholar]
  58. Yang J. Shen M. Wen H. Luo Y. Huang R. Rong L. Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr. Polym. 2020 230 115650 115659 10.1016/j.carbpol.2019.115650 31887904
    [Google Scholar]
  59. Volpi N. Chondroitin sulfate safety and quality. Molecules 2019 24 8 1447 1458 10.3390/molecules24081447 31013685
    [Google Scholar]
  60. Khan A.R. Yang X. Du X. Yang H. Liu Y. Khan A.Q. Zhai G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr. Polym. 2020 233 115837 115855 10.1016/j.carbpol.2020.115837 32059890
    [Google Scholar]
  61. Xie Y. Xu W. Jin Z. Zhao K. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Mater. Today Bio 2023 20 100617 100636 10.1016/j.mtbio.2023.100617 37441137
    [Google Scholar]
  62. Campea M.A. Lofts A. Xu F. Yeganeh M. Kostashuk M. Hoare T. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery. ACS Appl. Mater. Interfaces 2023 15 21 25324 25338 10.1021/acsami.3c02575 37192117
    [Google Scholar]
  63. Tønnesen H.H. Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002 28 6 621 630 10.1081/DDC‑120003853 12149954
    [Google Scholar]
  64. Naya A.K. Ara T.J. Hasnain M.S. Hoda N. Okra gum–alginate composites for controlled releasing drug delivery in applications of nanocomposite materials in drug delivery; Woodhead publishing series in biomaterials. Elsevier U.K. 2018 761 785
    [Google Scholar]
  65. Hasnain M.S. Nayak A.K. Kurakula M. Hoda M.N. Alginate nanoparticles in drug delivery in alginates in drug delivery. Academic Press 2020 129 152
    [Google Scholar]
  66. Chiu H.I. Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int. J. Nanomed 2021 16 2995 3020
    [Google Scholar]
  67. Shanmugapriya K. Kim H. Kang H.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int. J. Biol. Macromol. 2020 158 1163 1174 10.1016/j.ijbiomac.2020.05.008 32387601
    [Google Scholar]
  68. Varshosaz J. Dextran conjugates in drug delivery. Expert Opin. Drug Deliv. 2012 9 5 509 523 10.1517/17425247.2012.673580 22432550
    [Google Scholar]
  69. Chen F. Huang G. Huang H. Preparation and application of dextran and its derivatives as carriers. Int. J. Biol. Macromol. 2020 145 827 834 10.1016/j.ijbiomac.2019.11.151 31756474
    [Google Scholar]
  70. Hu Q. Lu Y. Luo Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021 264 117999 10.1016/j.carbpol.2021.117999 33910733
    [Google Scholar]
  71. Wasiak I. Kulikowska A. Janczewska M. Michalak M. Cymerman I.A. Nagalski A. Kallinger P. Szymanski W.W. Ciach T. Dextran nanoparticle synthesis and properties. PLoS One 2016 11 1 e0146237 10.1371/journal.pone.0146237 26752182
    [Google Scholar]
  72. Zahiri M. Babaei M. Abnous K. Taghdisi S.M. Ramezani M. Alibolandi M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J. Cell. Physiol. 2020 235 2 1036 1050 10.1002/jcp.29019 31276199
    [Google Scholar]
  73. Abid M. Naveed M. Azeem I. Faisal A. Faizan Nazar M. Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int. J. Pharm. 2020 586 119605 119628 10.1016/j.ijpharm.2020.119605 32650112
    [Google Scholar]
  74. Tiryaki E. Başaran Elalmış Y. Karakuzu İkizler B. Yücel S. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. J. Drug Deliv. Sci. Technol. 2020 56 101517 10.1016/j.jddst.2020.101517
    [Google Scholar]
  75. Kiani M. Tekie F.S. Dinarvand M. Soleimani M. Dinarvand R. Atyabi F. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study. J. mater. sci. eng. 2016 62 771 778
    [Google Scholar]
  76. Yahoum M.M. Toumi S. Hentabli S. Tahraoui H. Lefnaoui S. Hadjsadok A. Amrane A. Kebir M. Moula N. Assadi A.A. Zhang J. Mouni L. Experimental analysis and neural network modeling of the rheological behavior of xanthan gum and its derivatives. Materials 2023 16 7 2565 2589 10.3390/ma16072565 37048859
    [Google Scholar]
  77. Jadav M. Pooja D. Adams D.J. Kulhari H. Advances in xanthan gum-based systems for the delivery of therapeutic agents. Pharmaceutics 2023 15 2 402 418 10.3390/pharmaceutics15020402 36839724
    [Google Scholar]
  78. Abu Elella M.H. Goda E.S. Gab-Allah M.A. Hong S.E. Pandit B. Lee S. Gamal H. Rehman A. Yoon K.R. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J. Environ. Chem. Eng. 2021 9 1 104702 104729 10.1016/j.jece.2020.104702
    [Google Scholar]
  79. Patel J. Maji B. Moorthy N.S.H.N. Maiti S. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Advances 2020 10 45 27103 27136 10.1039/D0RA04366D 35515783
    [Google Scholar]
  80. Singhvi G. Hans N. Shiva N. Dubey S.K. Xanthan gum in drug delivery applications. Natural polysaccharides in drug delivery and biomedical applications. Academic Press 2019 121 144 10.1016/B978‑0‑12‑817055‑7.00005‑4
    [Google Scholar]
  81. Riaz T. Iqbal M.W. Jiang B. Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int. J. Biol. Macromol. 2021 186 472 489 10.1016/j.ijbiomac.2021.06.196 34217744
    [Google Scholar]
  82. Sara H. Yahoum M.M. Lefnaoui S. Abdelkader H. Moulai-Mostefa N. New alkylated xanthan gum as amphiphilic derivatives: Synthesis, physicochemical and rheological studies. J. Mol. Struct. 2020 1207 127768 10.1016/j.molstruc.2020.127768
    [Google Scholar]
  83. Anwar M. Pervaiz F. Shoukat H. Noreen S. Shabbir K. Majeed A. Ijaz S. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym. Bull. 2021 78 1 59 80 10.1007/s00289‑019‑03092‑4
    [Google Scholar]
  84. Anjum F. Bukhari S.A. Siddique M. Shahid M. Potgieter J.H. Jaafar H.Z.E. Ercisli S. Zia-Ul-Haq M. Microwave irradiated copolymerization of xanthan gum with acrylamide for colonic drug delivery. BioResources 2015 10 1 1434 1451 10.15376/biores.10.1.1434‑1451
    [Google Scholar]
  85. Tian B. Hua S. Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020 232 115805 10.1016/j.carbpol.2019.115805 31952603
    [Google Scholar]
  86. Chu H.M. Zhang R.X. Huang Q. Bai C.C. Wang Z.Z. Chemical conjugation with cyclodextrins as a versatile tool for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 2017 89 1-2 29 38 10.1007/s10847‑017‑0743‑3
    [Google Scholar]
  87. Haimhoffer Á. Rusznyák Á. Réti-Nagy K. Vasvári G. Váradi J. Vecsernyés M. Bácskay I. Fehér P. Ujhelyi Z. Fenyvesi F. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci. Pharm. 2019 87 4 33 57 10.3390/scipharm87040033
    [Google Scholar]
  88. Ameli H. Alizadeh N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Advances 2022 12 8 4681 4691 10.1039/D1RA07791K 35425510
    [Google Scholar]
  89. Coban O. Aytac Z. Yildiz Z.I. Uyar T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf. B Biointerfaces 2021 197 111391 111398 10.1016/j.colsurfb.2020.111391 33129100
    [Google Scholar]
  90. Chandel D. Uppal S. Mehta S.K. Shukla G. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: an in-vitro study. J. Drug Deliv. Ther. 2020 10 2-s 14 21 10.22270/jddt.v10i2‑s.3951
    [Google Scholar]
  91. S Kumar V. Rijo J. M S. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol. 2018 110 318 327 10.1016/j.ijbiomac.2018.01.082 29378277
    [Google Scholar]
  92. Zarbab A. Sajjad A. Rasul A. Jabeen F. Javaid Iqbal M. Synthesis and characterization of Guar gum based biopolymeric hydrogels as carrier materials for controlled delivery of methotrexate to treat colon cancer. Saudi J. Biol. Sci. 2023 30 8 103731 103742 10.1016/j.sjbs.2023.103731 37483836
    [Google Scholar]
  93. Zhu H. Zhang L. Kou F. Zhao J. Lei J. He J. Targeted therapeutic effects of oral magnetically driven pectin nanoparticles containing chlorogenic acid on colon cancer. Particuology 2024 84 53 59 10.1016/j.partic.2023.02.021
    [Google Scholar]
  94. Abbas N. Rasul A. Abbas G. Shah S. Hanif M. Targeted delivery of aspirin and metformin to colorectal cancer using disulfide bridged nanoparticles of thiolated pectin and thiolated Eudragit RL100. Mater. Today Commun. 2023 35 105586 105596 10.1016/j.mtcomm.2023.105586
    [Google Scholar]
  95. Sabra R. Billa N. Roberts C.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int. J. Pharm. 2019 572 118775 10.1016/j.ijpharm.2019.118775 31678385
    [Google Scholar]
  96. Hou Y. Jin J. Duan H. Liu C. Chen L. Huang W. Gao Z. Jin M. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 2022 283 121440 121459 10.1016/j.biomaterials.2022.121440 35245731
    [Google Scholar]
  97. Afinjuomo F. Fouladian P. Parikh A. Barclay T.G. Song Y. Garg S. Preparation and characterization of oxidized inulin hydrogel for controlled drug delivery. Pharmaceutics 2019 11 7 356 377 10.3390/pharmaceutics11070356 31336580
    [Google Scholar]
  98. Jangid A.K. Patel K. Jain P. Patel S. Gupta N. Pooja D. Kulhari H. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydr. Polym. 2020 247 116730 116741 10.1016/j.carbpol.2020.116730 32829852
    [Google Scholar]
  99. Woraphatphadung T. Sajomsang W. Rojanarata T. Ngawhirunpat T. Tonglairoum P. Opanasopit P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 2018 19 3 991 1000 10.1208/s12249‑017‑0906‑y 29110292
    [Google Scholar]
  100. Feng C. Li J. Kong M. Liu Y. Cheng X.J. Li Y. Park H.J. Chen X.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf. B Biointerfaces 2015 128 439 447 10.1016/j.colsurfb.2015.02.042 25769283
    [Google Scholar]
  101. Zheng X.F. Lian Q. Yang H. Wang X. Surface molecularly imprinted polymer of chitosan grafted poly (methyl methacrylate) for 5-fluorouracil and controlled release. Sci. Rep. 2016 6 1 21409 21420 10.1038/srep21409 26892676
    [Google Scholar]
  102. Yusefi M. Shameli K. Lee-Kiun M.S. Teow S.Y. Moeini H. Ali R.R. Kia P. Jie C.J. Abdullah N.H. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. Int. J. Biol. Macromol. 2023 233 123388 123401 10.1016/j.ijbiomac.2023.123388 36706873
    [Google Scholar]
  103. Anirudhan T.S. Sekhar V C. Nair S.S. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. J. Drug Deliv. Sci. Technol. 2019 51 569 582 10.1016/j.jddst.2019.03.036
    [Google Scholar]
  104. Xu L. Su T. Xu X. Zhu L. Shi L. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy. J. Drug Deliv. Sci. Technol. 2019 53 101190 101204 10.1016/j.jddst.2019.101190
    [Google Scholar]
  105. Nazeri M.T. Javanbakht S. Shaabani A. Ghorbani M. 5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration. J. Drug Deliv. Sci. Technol. 2020 57 101669 10.1016/j.jddst.2020.101669
    [Google Scholar]
  106. Tramontano C. Martins J.P. De Stefano L. Kemell M. Correia A. Terracciano M. Borbone N. Rea I. Santos H.A. Microfluidic‐assisted production of gastro‐resistant active‐targeted diatomite nanoparticles for the local release of galunisertib in metastatic colorectal cancer cells. Adv. Healthc. Mater. 2023 12 6 2202672 10.1002/adhm.202202672 36459471
    [Google Scholar]
  107. Gunji S. Obama K. Matsui M. Tabata Y. Sakai Y. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery 2013 154 5 991 999 10.1016/j.surg.2013.04.054 24008088
    [Google Scholar]
  108. Zu M. Ma L. Zhang X. Xie D. Kang Y. Xiao B. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surf. B Biointerf. 2019 177 399 406 10.1016/j.colsurfb.2019.02.031 30785037
    [Google Scholar]
  109. Soe Z.C. Poudel B.K. Nguyen H.T. Thapa R.K. Ou W. Gautam M. Poudel K. Jin S.G. Jeong J.H. Ku S.K. Choi H.G. Yong C.S. Kim J.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J. Pharmaceu. Sci. 2019 14 1 40 51 10.1016/j.ajps.2018.09.004 32104437
    [Google Scholar]
  110. Oommen O.P. Duehrkop C. Nilsson B. Hilborn J. Varghese O.P. Multifunctional hyaluronic acid and chondroitin sulfate nanoparticles: impact of glycosaminoglycan presentation on receptor mediated cellular uptake and immune activation. ACS Appl. Mater. Interfaces 2016 8 32 20614 20624 10.1021/acsami.6b06823 27468113
    [Google Scholar]
  111. Park W. Bae B. Na K. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials 2016 77 227 234 10.1016/j.biomaterials.2015.11.014 26606448
    [Google Scholar]
  112. Ayub A.D. Chiu H.I. Mat Yusuf S.N.A. Abd Kadir E. Ngalim S.H. Lim V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2019 47 1 353 369 10.1080/21691401.2018.1557672 30691309
    [Google Scholar]
  113. Hosseinifar T. Sheybani S. Abdouss M. Hassani Najafabadi S.A. Shafiee Ardestani M. Pressure responsive nanogel base on Alginate‐Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. A 2018 106 2 349 359 10.1002/jbm.a.36242 28940736
    [Google Scholar]
  114. Upadhyay M. Adena S.K.R. Vardhan H. Yadav S.K. Mishra B. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity in vivo antitumor activity. Mater. Sci. Eng. C 2019 104 109958 10.1016/j.msec.2019.109958 31500043
    [Google Scholar]
  115. Rajpoot K. Jain S.K. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int. J. Biol. Macromol. 2020 151 830 844 10.1016/j.ijbiomac.2020.02.132 32061847
    [Google Scholar]
  116. Sheng Y. Gao J. Yin Z.Z. Kang J. Kong Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr. Polym. 2021 269 118325 10.1016/j.carbpol.2021.118325 34294337
    [Google Scholar]
  117. Varshosaz J. Hassanzadeh F. Sadeghi-Aliabadi H. Firozian F. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles. Biomed Res Int. 2014 2014 708593 10.1155/2014/708593
    [Google Scholar]
  118. Zhang X. Zhang R. Huang J. Luo M. Chen X. Kang Y. Wu J. Albumin enhances dextran NP’s delivery and therapeutic efficacy of PTX for colorectal cancer. J. Mater. Chem. B Mater. Biol. Med. 2019 7 3537 3545 10.1039/C9TB00181F
    [Google Scholar]
  119. Singh S. Kotla N.G. Tomar S. Maddiboyina B. Webster T.J. Sharma D. Sunnapu O. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. Int. J. Nanomed. 2015 10 7175 7182 26648721
    [Google Scholar]
  120. Keramati Z. Motalleb G. Rahdar A. Kerachian M.A. Anticancer effect of fluorouracil and gum-based cerium oxide nanoparticles on human malignant colon carcinoma cell line (Caco2). Cell J. 2023 25 3 194 202 37038699
    [Google Scholar]
  121. Trombino S. Serini S. Cassano R. Calviello G. Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydr. Polym. 2019 208 431 440 10.1016/j.carbpol.2019.01.001 30658821
    [Google Scholar]
  122. Sun D. Zou Y. Song L. Han S. Yang H. Chu D. Dai Y. Ma J. O’Driscoll C.M. Yu Z. Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B 2022 12 1 378 393 10.1016/j.apsb.2021.06.005 35127393
    [Google Scholar]
  123. Bai H. Wang J. Phan C.U. Chen Q. Hu X. Shao G. Zhou J. Lai L. Tang G. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 2021 12 1 759 782 10.1038/s41467‑021‑21071‑0 33536421
    [Google Scholar]
  124. Sohail M. Mudassir Minhas M.U. Khan S. Hussain Z. de Matas M. Shah S.A. Khan S. Kousar M. Ullah K. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv. Transl. Res. 2019 9 2 595 614 10.1007/s13346‑018‑0512‑x 29611113
    [Google Scholar]
  125. Sharma M. Sharma V. Panda A.K. Majumdar D.K. Development of enteric submicron particles formulation of α-amylase for oral delivery. Pharm. Dev. Technol. 2013 18 3 560 569 10.3109/10837450.2011.604782 21870905
    [Google Scholar]
  126. Silva A.T. Cardoso B.C. Silva M.E. Freitas R.F. Sousa R.G. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol. 2015 6 1 8 19 10.4236/jbnb.2015.61002
    [Google Scholar]
  127. Rezvantalab S. Drude N.I. Moraveji M.K. Güvener N. Koons E.K. Shi Y. Lammers T. Kiessling F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018 9 1260 1279 10.3389/fphar.2018.01260 30450050
    [Google Scholar]
  128. Wu P. Zhou Q. Zhu H. Zhuang Y. Bao J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer 2020 20 1 354 10.1186/s12885‑020‑06803‑7 32345258
    [Google Scholar]
  129. El-Hammadi M.M. Delgado Á.V. Melguizo C. Prados J.C. Arias J.L. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int. J. Pharm. 2017 516 1-2 61 70 10.1016/j.ijpharm.2016.11.012 27825867
    [Google Scholar]
  130. Mostafa M.M. Amin M.M. Zakaria M.Y. Hussein M.A. Shamaa M.M. Abd El-Halim S.M. Chitosan surface-modified PLAnanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells. Pharmaceutics 2023 15 2 606 628 10.3390/pharmaceutics15020606 36839928
    [Google Scholar]
  131. Cruz-Nova P. Ancira-Cortez A. Ferro-Flores G. Ocampo-García B. Gibbens-Bandala B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics 2022 14 5 1095 1119 10.3390/pharmaceutics14051095 35631681
    [Google Scholar]
  132. Gigmes D. Trimaille T. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv. Colloid Interface Sci. 2021 294 102483 102418 10.1016/j.cis.2021.102483 34274723
    [Google Scholar]
  133. Afsharzadeh M. Abnous K. Yazdian-Robati R. Ataranzadeh A. Ramezani M. Hashemi M. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA–PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo. J. Cell. Physiol. 2019 234 5 6099 6107 10.1002/jcp.27346 30378118
    [Google Scholar]
  134. Shen K. Li D. Guan J. Ding J. Wang Z. Gu J. Liu T. Chen X. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine 2017 13 3 1279 1288 10.1016/j.nano.2016.12.022 28064009
    [Google Scholar]
  135. Park S.B. Sung M.H. Uyama H. Han D.K. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog. Polym. Sci. 2021 113 101341 10.1016/j.progpolymsci.2020.101341
    [Google Scholar]
  136. Li G. Wu J. Wang B. Yan S. Zhang K. Ding J. Yin J. Self-healing supramolecular self-assembled hydrogels based on poly (L-glutamic acid). Biomacromolecules 2015 16 11 3508 3518 10.1021/acs.biomac.5b01287 26414083
    [Google Scholar]
  137. Salmanpour M. Yousefi G. Samani S.M. Mohammadi S. Anbardar M.H. Tamaddon A. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur. J. Pharm. Sci. 2019 136 104941 10.1016/j.ejps.2019.05.019 31136788
    [Google Scholar]
  138. Qiu R. Qian F. Wang X. Li H. Wang L. Targeted delivery of 20(S)-ginsenoside Rg3-based polypeptide nanoparticles to treat colon cancer. Biomed. Microdevices 2019 21 1 18 10.1007/s10544‑019‑0374‑0 30783757
    [Google Scholar]
  139. Ahangaran F. Navarchian A.H. Picchioni F. Material encapsulation in poly(methyl methacrylate) shell: A review. J. Appl. Polym. Sci. 2019 136 41 48039 10.1002/app.48039
    [Google Scholar]
  140. Khan F.A. Akhtar S. Almohazey D. Alomari M. Almofty S.A. Badr I. Elaissari A. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1533 1542 10.1080/21691401.2019.1577886 31007071
    [Google Scholar]
  141. Chang T. Gosain P. Stenzel M.H. Lord M.S. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)—based micelles and mechanisms of uptake in colon carcinoma cells. Colloids Surf. B Biointerfaces 2016 144 257 264 10.1016/j.colsurfb.2016.04.019 27100852
    [Google Scholar]
  142. Brough C. Miller D.A. Keen J.M. Kucera S.A. Lubda D. Williams R.O. III Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech 2016 17 1 167 179 10.1208/s12249‑015‑0458‑y 26637232
    [Google Scholar]
  143. Rivera-Hernández G. Antunes-Ricardo M. Martínez-Morales P. Sánchez M.L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int. J. Pharm. 2021 600 120478 10.1016/j.ijpharm.2021.120478 33722756
    [Google Scholar]
  144. Akhlaq M. Azad A.K. Ullah I. Nawaz A. Safdar M. Bhattacharya T. Uddin A.B.M.H. Abbas S.A. Mathews A. Kundu S.K. Miret M.M. Murthy H.C.A. Nagaswarupa H.P. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/PVA) hydrogel as a pH-sensitive matrix. Polymers 2021 13 14 2300 2317 10.3390/polym13142300 34301057
    [Google Scholar]
  145. Ramnandan D. Mokhosi S. Daniels A. Singh M. Chitosan.; Polyethylene glycol and Polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in Doxorubicin delivery: A comparative study in vitro. Molecules 2021 26 13 3893 3916 10.3390/molecules26133893 34202245
    [Google Scholar]
  146. Mondal D. Griffith M. Venkatraman S.S. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int. J. Polym. Mater. 2016 65 5 255 265 10.1080/00914037.2015.1103241
    [Google Scholar]
  147. Daşkın D. Erdoğar N. İskit A.B. Bilensoy E. Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2023 80 104163 10.1016/j.jddst.2023.104163
    [Google Scholar]
  148. Sultana T. Fahad M.A. Park M. Kwon S.H. Lee B.T. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL‐mPEG and PDGF loaded PCL‐Chitosan dual layered vascular grafts. Biomaterials 2023 112 1 e3532
    [Google Scholar]
  149. Chang S.H. Lee H.J. Park S. Kim Y. Jeong B. Fast degradable polycaprolactone for drug delivery. Biomacromolecules 2018 19 6 2302 2307 10.1021/acs.biomac.8b00266 29742350
    [Google Scholar]
  150. Hu Y. He Y. Ji J. Zheng S. Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int. J. Nanomed. 2020 15 1239 1252 10.2147/IJN.S232777 32110020
    [Google Scholar]
  151. Hoang T. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. J. Polym. 2020 12 2 298 315
    [Google Scholar]
  152. Zhao X. Si J. Huang D. Li K. Xin Y. Sui M. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release. J. Control. Release 2020 323 565 577 10.1016/j.jconrel.2020.04.039 32343992
    [Google Scholar]
  153. Wei Y. Gu X. Sun Y. Meng F. Storm G. Zhong Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release 2020 319 407 415 10.1016/j.jconrel.2020.01.012 31923538
    [Google Scholar]
  154. Askarizadeh A. Mashreghi M. Mirhadi E. Mehrabian A. Heravi Shargh V. Badiee A. Alavizadeh S.H. Arabi L. Kamali H. Jaafari M.R. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J. Liposome Res. 2023 34 2 221 238 37647288
    [Google Scholar]
  155. Sharma M. Sharma R. Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration. RSC Advances 2018 8 5 2541 2551 10.1039/C7RA13555F 35541457
    [Google Scholar]
  156. Thakral S. Thakral N.K. Majumdar D.K. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv. 2013 10 1 131 149 10.1517/17425247.2013.736962 23102011
    [Google Scholar]
  157. Sharma M. Sharma V. Panda A.K. Majumdar D.K. Development of enteric submicron particle formulation of papain for oral delivery. Int. J. Nanomed. 2011 6 2097 2111
    [Google Scholar]
  158. Sharma M. Gupta N. Mucoadhesive cationic bromelain laden nanocarriers restore patency of airway hyperresponsive remodeling via nasal route. Adv. Ther. 2023 6 6 2200302 10.1002/adtp.202200302
    [Google Scholar]
  159. She X. Chen L. Velleman L. Li C. Zhu H. He C. Wang T. Shigdar S. Duan W. Kong L. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. J. Colloid Interfa. Sci. 2015 445 151 160 10.1016/j.jcis.2014.12.053 25617610
    [Google Scholar]
  160. Aisha A.F. Abdulmajid A.M. Ismail Z. Alrokayan S.A. Abu-Salah K.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in Eudragit RL100/RS100 for anti-colon cancer drug delivery. J. Nanomater. 2016 16 1 385 394
    [Google Scholar]
  161. Elmowafy M. Shalaby K. Elkomy M.H. Alsaidan O.A. Gomaa H.A. Hendawy O.M. Abdelgawad M.A. Ali H.M. Ahmed Y.M. El-Say K.M. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats. Drug Deliv. Transl. Res. 2023 13 10 2568 2588 10.1007/s13346‑023‑01338‑3 37000409
    [Google Scholar]
  162. Li L. Xiang D. Shigdar S. Yang W. Li Q. Lin J. Liu K. Duan W. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int. J. Nanomedicine 2014 9 1083 1096 24591829
    [Google Scholar]
  163. Li L. Li C. Zhou J. Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor. Int. J. Pharm. 2018 550 1-2 380 387 10.1016/j.ijpharm.2018.07.045 30040972
    [Google Scholar]
  164. Rahmati A. Homayouni Tabrizi M. Karimi E. Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. J. Biomater. Sci. Polym. Ed. 2022 33 10 1289 1307 10.1080/09205063.2022.2051693 35260045
    [Google Scholar]
  165. Zhang R. Jiang Y. Hao L. Yang Y. Gao Y. Zhang N. Zhang X. Song Y. CD44/folate dual targeting receptor reductive response PLGA-based micelles for cancer therapy. Front. Pharmacol. 2022 13 829590 10.3389/fphar.2022.829590 35359873
    [Google Scholar]
  166. Ren Y. Mu Y. Song Y. Xie J. Yu H. Gao S. Li S. Peng H. Zhou Y. Lu W. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv. 2016 23 5 1763 1772 10.3109/10717544.2015.1077293 26289214
    [Google Scholar]
  167. Wu P. Zhu H. Zhuang Y. Sun X. Gu N. Combined therapeutic effects of 131I-labeled and 5Fu-loaded multifunctional nanoparticles in colorectal cancer. Int. J. Nanomedicine 2020 15 2777 2787 10.2147/IJN.S215137 32368054
    [Google Scholar]
  168. Maya S. Sarmento B. Lakshmanan V.K. Menon D. Jayakumar R. Actively targeted cetuximab conjugated γ-poly(glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells. J. Biomed. Nanotechnol. 2014 10 8 1416 1428 10.1166/jbn.2014.1841 25016642
    [Google Scholar]
  169. Bazylińska U. Pietkiewicz J. Rossowska J. Chodaczek G. Gamian A. Wilk K.A. Polyelectrolyte oil-core nanocarriers for localized and sustained delivery of daunorubicin to colon carcinoma MC38 cells: the case of polysaccharide multilayer film in relation to PEG‐ylated shell. Macromol. Biosci. 2017 17 5 1600356 10.1002/mabi.201600356 28094898
    [Google Scholar]
  170. Ballestri M. Caruso E. Guerrini A. Ferroni C. Banfi S. Gariboldi M. Monti E. Sotgiu G. Varchi G. Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. J. Photochem. Photobiol. B 2018 186 169 177 10.1016/j.jphotobiol.2018.07.013 30064063
    [Google Scholar]
  171. Abedanzadeh M. Salmanpour M. Farjadian F. Mohammadi S. Tamaddon A.M. Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in-vitro characterization. J. Drug Deliv. Sci. Technol. 2020 58 101793 10.1016/j.jddst.2020.101793
    [Google Scholar]
  172. Alnaim A.S. Formulation, characterization, and cytotoxic effect of pva incorporated iron oxide nanoparticles of gramine Using HCT-116 Cell Line in vitro. Indian J. Pharmacal. Edu. Resea. 2023 57 4 1021 1028 10.5530/ijper.57.4.123
    [Google Scholar]
  173. Bhusnure O.G. Gholve S.B. Giram P.S. Gaikwad A.V. Udumansha U. Mani G. Tae J.H. Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity. J. Drug Deliv. Sci. Technol. 2021 64 102654 10.1016/j.jddst.2021.102654
    [Google Scholar]
  174. Smruthi M.R. Nallamuthu I. Singsit D. Anand T. Toxicological evaluation of PLA/PVA-naringenin nanoparticles: In vitro and in vivo studies. Open Nano 2022 7 100061
    [Google Scholar]
  175. Öztürk K. Mashal A.R. Yegin B.A. Çalış S. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm. Dev. Technol. 2017 22 5 635 641 10.3109/10837450.2015.1116565 26616273
    [Google Scholar]
  176. Bhattacharya S. Singh D. Aich J. Ajazuddin Shete M.B. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting. Mater. Today Commun. 2022 31 103757 10.1016/j.mtcomm.2022.103757
    [Google Scholar]
  177. Ni R. Duan D. Li B. Li Z. Li L. Ming Y. Wang X. Chen J. Dual-modified PCL-PEG nanoparticles for improved targeting and therapeutic efficacy of docetaxel against colorectal cancer. Pharm. Dev. Technol. 2021 26 8 910 921 10.1080/10837450.2021.1957930 34280065
    [Google Scholar]
  178. Szczepanowicz K. Bzowska M. Kruk T. Karabasz A. Bereta J. Warszynski P. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids Surf. B Biointerfa. 2016 143 463 471 10.1016/j.colsurfb.2016.03.064 27037784
    [Google Scholar]
  179. Duan X. Wang P. Men K. Gao X. Huang M. Gou M. Chen L. Qian Z. Wei Y. Treating colon cancer with a suicide gene delivered by self-assembled cationic MPEG–PCL micelles. Nanoscale 2012 4 7 2400 2407 10.1039/c2nr30079f 22388488
    [Google Scholar]
  180. Emami J. Maghzi P. Hasanzadeh F. Sadeghi H. Mirian M. Rostami M. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Pharm. Dev. Technol. 2018 23 1 41 54 10.1080/10837450.2017.1340950 28608760
    [Google Scholar]
  181. Sunoqrot S. Abujamous L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol. 2019 52 670 676 10.1016/j.jddst.2019.05.035
    [Google Scholar]
  182. Ibrahim B. Mady O.Y. Tambuwala M.M. Haggag Y.A. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer. Nanomedicine 2022 17 6 367 381 10.2217/nnm‑2021‑0423 35109714
    [Google Scholar]
  183. Pushpa Sweety J. Sowparani S. Mahalakshmi P. Selvasudha N. Yamini D. Geetha K. Ruckmani K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties. J. Drug Deliv. Sci. Technol. 2020 55 101334 10.1016/j.jddst.2019.101334
    [Google Scholar]
  184. Asfour M.H. Mohsen A.M. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J. Adv. Res. 2018 9 17 26 10.1016/j.jare.2017.10.003 30034879
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X299780240905141609
Loading
/content/journals/ccand/10.2174/012212697X299780240905141609
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: controlled release ; Colon cancer ; drug carrier ; biomaterials ; nanocarriers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test